Study of Phase Noise in Optical Coherent Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Study of Phase Noise in Optical Coherent Systems PDF full book. Access full book title Study of Phase Noise in Optical Coherent Systems by Ramtin Farhoudi. Download full books in PDF and EPUB format.

Study of Phase Noise in Optical Coherent Systems

Study of Phase Noise in Optical Coherent Systems PDF Author: Ramtin Farhoudi
Publisher:
ISBN:
Category :
Languages : en
Pages : 70

Book Description
Phase noise is an important issue in designing today's optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design.

Study of Phase Noise in Optical Coherent Systems

Study of Phase Noise in Optical Coherent Systems PDF Author: Ramtin Farhoudi
Publisher:
ISBN:
Category :
Languages : en
Pages : 70

Book Description
Phase noise is an important issue in designing today's optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design.

Phase Noise in Coherent Optical Communications

Phase Noise in Coherent Optical Communications PDF Author: Murat Y. Azizoğlu
Publisher:
ISBN:
Category : Frequency synthesizers
Languages : en
Pages : 206

Book Description


Phase-Modulated Optical Communication Systems

Phase-Modulated Optical Communication Systems PDF Author: Keang-Po Ho
Publisher: Springer Science & Business Media
ISBN: 9780387243924
Category : Technology & Engineering
Languages : en
Pages : 452

Book Description
Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: - The transmitter and receiver for phase-modulated coherent lightwave systems - Method for performance analysis of phase-modulated optical signals - Direct-detection DPSK signal with fiber nonlinearities, degraded by nonlinear phase noise and intrachannel effects - Wavelength-division-multiplexed direct-detection DPSK signals - Multi-level phase-modulated optical signals, such as the four-phase DQPSK signal. Graduate students, professional engineers, and researchers will all benefit from this updated treatment of an important topic in the optical communications field.

Coherent Optical Fiber Communications

Coherent Optical Fiber Communications PDF Author: T. Okoshi
Publisher: Springer Science & Business Media
ISBN: 9789027726773
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description


Noises in Optical Communications and Photonic Systems

Noises in Optical Communications and Photonic Systems PDF Author: Le Nguyen Binh
Publisher: CRC Press
ISBN: 1315355442
Category : Technology & Engineering
Languages : en
Pages : 499

Book Description
Transmitting information over optical fibers requires a high degree of signal integrity due to noise levels existing in optical systems. Proper methods and techniques for noise evaluations are critical in achieving high-performance. This book provides a fundamental understanding of noise generation processes in optical communications and photonic signals. It discusses techniques for noise evaluation in optical communication systems, especially digital optical systems, as well as transmission systems performance and noise impacts in photonic processing systems

OFDM for Optical Communications

OFDM for Optical Communications PDF Author: William Shieh
Publisher: Academic Press
ISBN: 0080952062
Category : Technology & Engineering
Languages : en
Pages : 457

Book Description
- The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology - The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - An introduction to signal processing for optical communications - An introduction to optical communication fundamentals for the wireless engineer

Phase-Modulated Optical Communication Systems

Phase-Modulated Optical Communication Systems PDF Author: Keang-Po Ho
Publisher: Springer Science & Business Media
ISBN: 0387255559
Category : Science
Languages : en
Pages : 440

Book Description
Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: - The transmitter and receiver for phase-modulated coherent lightwave systems - Method for performance analysis of phase-modulated optical signals - Direct-detection DPSK signal with fiber nonlinearities, degraded by nonlinear phase noise and intrachannel effects - Wavelength-division-multiplexed direct-detection DPSK signals - Multi-level phase-modulated optical signals, such as the four-phase DQPSK signal. Graduate students, professional engineers, and researchers will all benefit from this updated treatment of an important topic in the optical communications field.

Optical Communications

Optical Communications PDF Author: Jürgen Franz
Publisher: CRC Press
ISBN: 9780849309359
Category : Science
Languages : en
Pages : 744

Book Description
The advantages of optical communications are many: ultra-high speed, highly reliable information transmission, and cost-effective modulation and transmission links to name but a few. It is no surprise that optical fiber communications systems are now in extensive use all over the world. Along with software and microelectronics, optical communication represents a key technology of modern telecommunication systems. Optical Communications: Components and Systems provides the basic material required for advanced study in theory and applications of optical fiber and space communication systems. After a review of some fundamental background material, component-based chapters discuss all relevant passive and active optical and optoelectronic components used in point-to-point links and in networks. Systems chapters address the analysis and optimization of both incoherent and coherent systems, introduce fiber optic link design, and discuss physical limits. The authors also provide an overview of applications such as optical networks and optical free-space communications. The advanced interactive multimedia communications of today and the future rely on optical fiber and space communication techniques. Optical Communications: Components and Systems offers engineers and physicists a working reference for the selection and design of optical communication systems and provides engineering students with a valuable text that prepares them for work in this essential and rapidly growing field.

Optical Communications and Networking

Optical Communications and Networking PDF Author: Zhongqi Pan
Publisher: MDPI
ISBN: 3039282581
Category : Technology & Engineering
Languages : en
Pages : 132

Book Description
In the past few decades, the optical communication industry has explored multiple degrees of freedom of the photon, such as time, wavelength, amplitude, phase, polarization, and space, to significantly reduce the cost/bit of data transmission by increasing the capacity per fiber through multiplexing technology and by reducing the size and power through electronic and photonic integration. This book aims to explore the latest advancements in this industry, including the technologies in devices, systems, and network levels with applications from short-reach chip-to-chip interconnections to long-haul backbone communications at the trans-oceanic distance.

Performance Analysis of Optical Systems Using Approximate Phase Noise Statistics

Performance Analysis of Optical Systems Using Approximate Phase Noise Statistics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 40

Book Description