Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Scientific and Technical Aerospace Reports
Unsteady Combustor Physics
Author: Tim C. Lieuwen
Publisher: Cambridge University Press
ISBN: 1139576836
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.
Publisher: Cambridge University Press
ISBN: 1139576836
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.
ARO and AFOSR Contractors Meeting in Chemical Propulsion, Held in Virginia Beach, Virginia on 3-6 June 1996
Author: David M. Mann
Publisher:
ISBN:
Category : Chemical reactions
Languages : en
Pages : 302
Book Description
Partial contents: Supercritical droplet behavior; Fundamentals of acoustic instabilities in liquid-propellant rockets; Modeling liquid jet atomization proceses; Liquid-propellant droplets dynamics and combustions in supercritical forced convective environments; Contributions of shear coaxial injectors to liquid rocket motor combustion instabilities; High pressure combustion studies under combustion driven oscillatory flow conditions; Droplet collision on liquid propellant combustion; Combustion and plumes; Development of a collisional radiative emission model for strongly nonequilibrium flows; Energy transfer processes in the production of excited states in reacting rocket flows; modeling nonequilibrium radiation in high altitude plumes; kinetics of plume radiation, and of HEDMs and metallic fuels combustion; Nonsteady combustion mechanisms of advanced solid propellants; Chemical mechanisms at the burning surface. p15
Publisher:
ISBN:
Category : Chemical reactions
Languages : en
Pages : 302
Book Description
Partial contents: Supercritical droplet behavior; Fundamentals of acoustic instabilities in liquid-propellant rockets; Modeling liquid jet atomization proceses; Liquid-propellant droplets dynamics and combustions in supercritical forced convective environments; Contributions of shear coaxial injectors to liquid rocket motor combustion instabilities; High pressure combustion studies under combustion driven oscillatory flow conditions; Droplet collision on liquid propellant combustion; Combustion and plumes; Development of a collisional radiative emission model for strongly nonequilibrium flows; Energy transfer processes in the production of excited states in reacting rocket flows; modeling nonequilibrium radiation in high altitude plumes; kinetics of plume radiation, and of HEDMs and metallic fuels combustion; Nonsteady combustion mechanisms of advanced solid propellants; Chemical mechanisms at the burning surface. p15
Government Reports Announcements & Index
FY ... US Air Force Plan for Defense Research Sciences
Author:
Publisher:
ISBN:
Category : Aeronautics, Military
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category : Aeronautics, Military
Languages : en
Pages : 236
Book Description
Aeronautical Enginnering: A Cumulative Index to a Continuing Bibliography (supplement 312)
Fourth International Microgravity Combustion Workshop
High Performance Computing
Author: Alex Veidenbaum
Publisher: Springer
ISBN: 3540397078
Category : Computers
Languages : en
Pages : 579
Book Description
The 5th International Symposium on High Performance Computing (ISHPC–V) was held in Odaiba, Tokyo, Japan, October 20–22, 2003. The symposium was thoughtfully planned, organized, and supported by the ISHPC Organizing C- mittee and its collaborating organizations. The ISHPC-V program included two keynote speeches, several invited talks, two panel discussions, and technical sessions covering theoretical and applied research topics in high–performance computing and representing both academia and industry. One of the regular sessions highlighted the research results of the ITBL project (IT–based research laboratory, http://www.itbl.riken.go.jp/). ITBL is a Japanese national project started in 2001 with the objective of re- izing a virtual joint research environment using information technology. ITBL aims to connect 100 supercomputers located in main Japanese scienti?c research laboratories via high–speed networks. A total of 58 technical contributions from 11 countries were submitted to ISHPC-V. Each paper received at least three peer reviews. After a thorough evaluation process, the program committee selected 14 regular (12-page) papers for presentation at the symposium. In addition, several other papers with fav- able reviews were recommended for a poster session presentation. They are also included in the proceedings as short (8-page) papers. Theprogramcommitteegaveadistinguishedpaperawardandabeststudent paper award to two of the regular papers. The distinguished paper award was given for “Code and Data Transformations for Improving Shared Cache P- formance on SMT Processors” by Dimitrios S. Nikolopoulos. The best student paper award was given for “Improving Memory Latency Aware Fetch Policies for SMT Processors” by Francisco J. Cazorla.
Publisher: Springer
ISBN: 3540397078
Category : Computers
Languages : en
Pages : 579
Book Description
The 5th International Symposium on High Performance Computing (ISHPC–V) was held in Odaiba, Tokyo, Japan, October 20–22, 2003. The symposium was thoughtfully planned, organized, and supported by the ISHPC Organizing C- mittee and its collaborating organizations. The ISHPC-V program included two keynote speeches, several invited talks, two panel discussions, and technical sessions covering theoretical and applied research topics in high–performance computing and representing both academia and industry. One of the regular sessions highlighted the research results of the ITBL project (IT–based research laboratory, http://www.itbl.riken.go.jp/). ITBL is a Japanese national project started in 2001 with the objective of re- izing a virtual joint research environment using information technology. ITBL aims to connect 100 supercomputers located in main Japanese scienti?c research laboratories via high–speed networks. A total of 58 technical contributions from 11 countries were submitted to ISHPC-V. Each paper received at least three peer reviews. After a thorough evaluation process, the program committee selected 14 regular (12-page) papers for presentation at the symposium. In addition, several other papers with fav- able reviews were recommended for a poster session presentation. They are also included in the proceedings as short (8-page) papers. Theprogramcommitteegaveadistinguishedpaperawardandabeststudent paper award to two of the regular papers. The distinguished paper award was given for “Code and Data Transformations for Improving Shared Cache P- formance on SMT Processors” by Dimitrios S. Nikolopoulos. The best student paper award was given for “Improving Memory Latency Aware Fetch Policies for SMT Processors” by Francisco J. Cazorla.
Government Reports Annual Index
Author:
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 1754
Book Description
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 1754
Book Description
Advanced Technologies for Gas Turbines
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030966425X
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Publisher: National Academies Press
ISBN: 030966425X
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.