Author: Julio A Alonso
Publisher: World Scientific
ISBN: 1908977752
Category : Science
Languages : en
Pages : 492
Book Description
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered.Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine./a
Structure And Properties Of Atomic Nanoclusters (2nd Edition)
Structure and Properties of Atomic Nanoclusters
Author: Julio A. Alonso
Publisher: World Scientific
ISBN: 1848167334
Category : Science
Languages : en
Pages : 492
Book Description
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Publisher: World Scientific
ISBN: 1848167334
Category : Science
Languages : en
Pages : 492
Book Description
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Gold Nanoparticles For Physics, Chemistry And Biology (Second Edition)
Author: Catherine Louis
Publisher: World Scientific
ISBN: 1786341263
Category : Science
Languages : en
Pages : 681
Book Description
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
Publisher: World Scientific
ISBN: 1786341263
Category : Science
Languages : en
Pages : 681
Book Description
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
Atomically Precise Metal Nanoclusters
Author: Zhikun Wu
Publisher: Morgan & Claypool Publishers
ISBN: 1636390250
Category : Science
Languages : en
Pages : 141
Book Description
Atomically precise metal nanocluster research has emerged as a new frontier. This book serves as an introduction to metal nanoclusters protected by ligands. The authors have summarized the synthesis principles and methods, the characterization methods and new physicochemical properties, and some potential applications. By pursuing atomic precision, such nanocluster materials provide unprecedented opportunities for establishing precise relationships between the atomic-level structures and the properties. The book should be accessible to senior undergraduate and graduate students, researchers in various fields (e.g., chemistry, physics, materials, biomedicine, and engineering), R&D scientists, and science policy makers.
Publisher: Morgan & Claypool Publishers
ISBN: 1636390250
Category : Science
Languages : en
Pages : 141
Book Description
Atomically precise metal nanocluster research has emerged as a new frontier. This book serves as an introduction to metal nanoclusters protected by ligands. The authors have summarized the synthesis principles and methods, the characterization methods and new physicochemical properties, and some potential applications. By pursuing atomic precision, such nanocluster materials provide unprecedented opportunities for establishing precise relationships between the atomic-level structures and the properties. The book should be accessible to senior undergraduate and graduate students, researchers in various fields (e.g., chemistry, physics, materials, biomedicine, and engineering), R&D scientists, and science policy makers.
Structure and Properties of Clusters: from a few Atoms to Nanoparticles
Author: George Maroulis
Publisher: CRC Press
ISBN: 9067644560
Category : Mathematics
Languages : en
Pages : 213
Book Description
This volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles. Special emphasis is given to bringing forth new insights on the structure and properties of these systems with an eye towards potential applications in Materials Science. Overal, the volume presents to the readers an amazing wealth of new results. Particular subjects include water clusters, Silicon, Iron, Nickel and Gold clusters, carbon-titanium microclusters and nanoparticles, fullerenes, carbon nanotubes, chiral carbon nanotubes, boron nanoclusters and more.
Publisher: CRC Press
ISBN: 9067644560
Category : Mathematics
Languages : en
Pages : 213
Book Description
This volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles. Special emphasis is given to bringing forth new insights on the structure and properties of these systems with an eye towards potential applications in Materials Science. Overal, the volume presents to the readers an amazing wealth of new results. Particular subjects include water clusters, Silicon, Iron, Nickel and Gold clusters, carbon-titanium microclusters and nanoparticles, fullerenes, carbon nanotubes, chiral carbon nanotubes, boron nanoclusters and more.
Metal Nanocluster Chemistry
Author: Manzhou Zhu
Publisher: Elsevier
ISBN: 0323904750
Category : Science
Languages : en
Pages : 396
Book Description
Atomically precise metal nanoclusters occupy the gap between discrete atoms and plasmonic nanomaterials, and they offer intriguing physical-chemical properties that can be rationalized in terms of their quantum size effects and discrete electronic states. The atomically precise nature of their structures lends them well to structure-property relationship elucidation, making them particularly useful for informing the rational design of nanoclusters with enhanced performance. Metal Nanocluster Chemistry: Ligand-Protected Metal Nanoclusters With Atomic Precision provides a concise introduction to the study of these useful nanoclusters. Beginning with an introduction to the fundamental concepts of, and prospects for, metal nanoclusters, the book goes on to highlight synthetic methods for controllable preparation. The subsequent chapters then highlight characterization, mechanism of size growth and structure evolution, and physical-chemical properties. Later chapters examine theoretical approaches for calculating and evaluating structures and properties. They also highlight the assembly of nanocluster building blocks and their practical applications. Drawing on the knowledge of its expert author, Metal Nanocluster Chemistry is a useful introductory guide to these exciting structures. - Provides a concise introduction to atomically-precise metal nanoclusters, ranging from characterization and property investigation to applications - Includes insight into both current trends and future potential, encouraging and supporting further development - Holistically combines physical approaches with theoretical calculation methods
Publisher: Elsevier
ISBN: 0323904750
Category : Science
Languages : en
Pages : 396
Book Description
Atomically precise metal nanoclusters occupy the gap between discrete atoms and plasmonic nanomaterials, and they offer intriguing physical-chemical properties that can be rationalized in terms of their quantum size effects and discrete electronic states. The atomically precise nature of their structures lends them well to structure-property relationship elucidation, making them particularly useful for informing the rational design of nanoclusters with enhanced performance. Metal Nanocluster Chemistry: Ligand-Protected Metal Nanoclusters With Atomic Precision provides a concise introduction to the study of these useful nanoclusters. Beginning with an introduction to the fundamental concepts of, and prospects for, metal nanoclusters, the book goes on to highlight synthetic methods for controllable preparation. The subsequent chapters then highlight characterization, mechanism of size growth and structure evolution, and physical-chemical properties. Later chapters examine theoretical approaches for calculating and evaluating structures and properties. They also highlight the assembly of nanocluster building blocks and their practical applications. Drawing on the knowledge of its expert author, Metal Nanocluster Chemistry is a useful introductory guide to these exciting structures. - Provides a concise introduction to atomically-precise metal nanoclusters, ranging from characterization and property investigation to applications - Includes insight into both current trends and future potential, encouraging and supporting further development - Holistically combines physical approaches with theoretical calculation methods
Superhalogens & Superalkalis: Exploration of Structure, Properties and Applications
Author: Ambrish Kumar Srivastava
Publisher: Frontiers Media SA
ISBN: 2832508936
Category : Science
Languages : en
Pages : 99
Book Description
Publisher: Frontiers Media SA
ISBN: 2832508936
Category : Science
Languages : en
Pages : 99
Book Description
Structure and Properties of Atomic Nanoclusters
Author: Julio A. Alonso
Publisher: World Scientific
ISBN: 1848167342
Category : Science
Languages : en
Pages : 492
Book Description
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Publisher: World Scientific
ISBN: 1848167342
Category : Science
Languages : en
Pages : 492
Book Description
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Atomically Precise Metal Nanoclusters
Author: Thalappil Pradeep
Publisher: Elsevier
ISBN: 0323908802
Category : Science
Languages : en
Pages : 666
Book Description
Atomically Precise Metal Nanoclusters discusses the host of exciting properties that can be better harnessed with a solid understanding of their different structures and subsequent properties at the molecular level. The book delves into the foundational chemistry of numerous key atomically precise clusters and provides guidance on key approaches employed to examine them. Beginning with an introduction to the properties and fundamental nano-chemistry of atomically precise metal nanoclusters, the book then explores key approaches for their synthesis, examination and modification, including chromatography, mass spectrometry, single crystal diffraction, electron microscopy and computational approaches. A final section covers specific nanoclusters and cluster systems. User will find the important knowledge of an experienced team of contributors who provide a detailed guide to understanding, investigating and utilizing these useful structures that is ideal for anyone working in related fields. - Presents a comprehensive guide that combines key knowledge, approaches and other types of metal nanocluster - Supports an understanding of important interactions and approaches using clear figures - Highlights future needs and prospects in the field
Publisher: Elsevier
ISBN: 0323908802
Category : Science
Languages : en
Pages : 666
Book Description
Atomically Precise Metal Nanoclusters discusses the host of exciting properties that can be better harnessed with a solid understanding of their different structures and subsequent properties at the molecular level. The book delves into the foundational chemistry of numerous key atomically precise clusters and provides guidance on key approaches employed to examine them. Beginning with an introduction to the properties and fundamental nano-chemistry of atomically precise metal nanoclusters, the book then explores key approaches for their synthesis, examination and modification, including chromatography, mass spectrometry, single crystal diffraction, electron microscopy and computational approaches. A final section covers specific nanoclusters and cluster systems. User will find the important knowledge of an experienced team of contributors who provide a detailed guide to understanding, investigating and utilizing these useful structures that is ideal for anyone working in related fields. - Presents a comprehensive guide that combines key knowledge, approaches and other types of metal nanocluster - Supports an understanding of important interactions and approaches using clear figures - Highlights future needs and prospects in the field
Electronic and structural properties of nanoclusters
Author: Alexey Tal
Publisher: Linköping University Electronic Press
ISBN: 9176853497
Category :
Languages : en
Pages : 92
Book Description
Nanoclusters have gained a huge interest due to their unique properties. They represent an intermediate state between an atom and a solid, which manifests itself in their atomic configurations and electronic structure. The applications of nanoclusters require detailed understanding of their properties and strongly depend on the ability to control their synthesis process. Significant effort has been invested in modelling of nanoclusters properties. However, the complexity of these systems is such that many aspects of their growth process and properties are yet to be understood. My thesis focuses on describing structural and electronic properties of nanoclusters. In particular, the model for nanoparticles growth in plasma condition is developed and applied, allowing to describe the influence of the plasma conditions on the evaporation, growth and morphological transformation processes. The mechanism driving the morphology transition from icosahedral to decahedral phase is suggested based on force-fields models. Spectroscopic methods allow for precise characterization of nanoclusters and constitute an important tool for analysis of their electronic structure of valence band as well as core-states. The special attention in the thesis is paid to the core-states of nanoclusters and influences that affect them. In particular, the effects of local coordination, interatomic distances and confinement effects are investigated in metal nanoclusters by density functional theory methods. These effects and their contribution to spectroscopic features of nanoclusters in X-ray photoemission are modelled. The relation between the reactivity of nanoclusters and their spectroscopic features calculated in different approximations are revealed and explained. Ceria is a very important system for many applications due to the ability of cerium atoms to change their oxidation state depending on the environment. The shift of the oxidation state and its effects on the core-states is examined with X-ray absorption measurements and modelling allowing to build a rigid foundation for interpretation of the measured spectra and characterization of electronic structure of ceria nanoparticles.
Publisher: Linköping University Electronic Press
ISBN: 9176853497
Category :
Languages : en
Pages : 92
Book Description
Nanoclusters have gained a huge interest due to their unique properties. They represent an intermediate state between an atom and a solid, which manifests itself in their atomic configurations and electronic structure. The applications of nanoclusters require detailed understanding of their properties and strongly depend on the ability to control their synthesis process. Significant effort has been invested in modelling of nanoclusters properties. However, the complexity of these systems is such that many aspects of their growth process and properties are yet to be understood. My thesis focuses on describing structural and electronic properties of nanoclusters. In particular, the model for nanoparticles growth in plasma condition is developed and applied, allowing to describe the influence of the plasma conditions on the evaporation, growth and morphological transformation processes. The mechanism driving the morphology transition from icosahedral to decahedral phase is suggested based on force-fields models. Spectroscopic methods allow for precise characterization of nanoclusters and constitute an important tool for analysis of their electronic structure of valence band as well as core-states. The special attention in the thesis is paid to the core-states of nanoclusters and influences that affect them. In particular, the effects of local coordination, interatomic distances and confinement effects are investigated in metal nanoclusters by density functional theory methods. These effects and their contribution to spectroscopic features of nanoclusters in X-ray photoemission are modelled. The relation between the reactivity of nanoclusters and their spectroscopic features calculated in different approximations are revealed and explained. Ceria is a very important system for many applications due to the ability of cerium atoms to change their oxidation state depending on the environment. The shift of the oxidation state and its effects on the core-states is examined with X-ray absorption measurements and modelling allowing to build a rigid foundation for interpretation of the measured spectra and characterization of electronic structure of ceria nanoparticles.