Author: Cuie Wen
Publisher: Woodhead Publishing
ISBN: 0128188324
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
Structural Biomaterials
Author: Cuie Wen
Publisher: Woodhead Publishing
ISBN: 0128188324
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
Publisher: Woodhead Publishing
ISBN: 0128188324
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
Structural Biomaterials
Author: Julian F. V. Vincent
Publisher: Princeton University Press
ISBN: 9780691025131
Category : Medical
Languages : en
Pages : 260
Book Description
"This book should go a long way towards filling the communication gap between biology and physics in the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.
Publisher: Princeton University Press
ISBN: 9780691025131
Category : Medical
Languages : en
Pages : 260
Book Description
"This book should go a long way towards filling the communication gap between biology and physics in the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.
Structural Biomaterials
Author: Julian Vincent
Publisher: Princeton University Press
ISBN: 0691154007
Category : Medical
Languages : en
Pages : 238
Book Description
Introduction to the structural materials in natural organisms and what we can learn from them to improve man-made technology, from nanotechnology to textiles to architecture. Emphasizes the mechanical properties of structural biomaterials, their contribution to the lives of organisms, and how these materials differ from man-made ones.
Publisher: Princeton University Press
ISBN: 0691154007
Category : Medical
Languages : en
Pages : 238
Book Description
Introduction to the structural materials in natural organisms and what we can learn from them to improve man-made technology, from nanotechnology to textiles to architecture. Emphasizes the mechanical properties of structural biomaterials, their contribution to the lives of organisms, and how these materials differ from man-made ones.
Biomaterials
Author: Joon Park
Publisher: Springer Science & Business Media
ISBN: 0387378804
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.
Publisher: Springer Science & Business Media
ISBN: 0387378804
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.
Structural Biomaterials for the 21st Century
Author: Mitsuo Niinomi
Publisher:
ISBN:
Category : Biomechanics
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Biomechanics
Languages : en
Pages : 312
Book Description
Handbook of Biomaterials for Medical Applications, Volume 1
Author: Deepa Suhag
Publisher: Springer Nature
ISBN: 9819748186
Category :
Languages : en
Pages : 391
Book Description
Publisher: Springer Nature
ISBN: 9819748186
Category :
Languages : en
Pages : 391
Book Description
Essentials of Modern Materials Science and Engineering
Author: James A. Newell
Publisher: John Wiley & Sons
ISBN: 0471753653
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
This book begins with four fundamental tenants: The properties of a material are determined by its structure. Processing can alter that structure in specific and predictable ways;The behavior of materials is grounded in science and is understandable; The properties of all materials change over time with use and exposure to environmental conditions;When selecting a material, sufficient and appropriate testing must be performed to insure that the material will remain suitable throughout the reasonable life of the product. This text assumes that the students are at least sophomores, so that they are familiar with basic chemical bonding and the periodic table. But it is an introductory materials course, so there will be no differential equations, percolation theory, quantum mechanics, statistical thermodynamics, or other advanced topics. The book is designed as an introduction to the field, not a comprehensive guide to all materials science knowledge. Instead of going into great detail in many areas, the book provides key concepts and fundamentals students need to understand materials science and make informed decisions. An example of the philosophy is found in the materials testing section. Although countless variations exist in testing techniques, the chapter focuses on operating principles and the property to be measured, rather than confusing the student with exposition on variations and exceptions. That material is beyond the scope of most introductory courses.
Publisher: John Wiley & Sons
ISBN: 0471753653
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
This book begins with four fundamental tenants: The properties of a material are determined by its structure. Processing can alter that structure in specific and predictable ways;The behavior of materials is grounded in science and is understandable; The properties of all materials change over time with use and exposure to environmental conditions;When selecting a material, sufficient and appropriate testing must be performed to insure that the material will remain suitable throughout the reasonable life of the product. This text assumes that the students are at least sophomores, so that they are familiar with basic chemical bonding and the periodic table. But it is an introductory materials course, so there will be no differential equations, percolation theory, quantum mechanics, statistical thermodynamics, or other advanced topics. The book is designed as an introduction to the field, not a comprehensive guide to all materials science knowledge. Instead of going into great detail in many areas, the book provides key concepts and fundamentals students need to understand materials science and make informed decisions. An example of the philosophy is found in the materials testing section. Although countless variations exist in testing techniques, the chapter focuses on operating principles and the property to be measured, rather than confusing the student with exposition on variations and exceptions. That material is beyond the scope of most introductory courses.
Polymeric Biomaterials
Author: Severian Dumitriu
Publisher: CRC Press
ISBN: 1420094718
Category : Science
Languages : en
Pages : 920
Book Description
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona
Publisher: CRC Press
ISBN: 1420094718
Category : Science
Languages : en
Pages : 920
Book Description
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona
PEEK Biomaterials Handbook
Author: Steven M. Kurtz
Publisher: William Andrew
ISBN: 143774463X
Category : Medical
Languages : en
Pages : 309
Book Description
PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Covering materials science, tribology and applications Provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications
Publisher: William Andrew
ISBN: 143774463X
Category : Medical
Languages : en
Pages : 309
Book Description
PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Covering materials science, tribology and applications Provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications
Comprehensive Structural Integrity
Author: Ian Milne
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.