Author: Peter Michler
Publisher: Springer Science & Business Media
ISBN: 3540874461
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.
Single Semiconductor Quantum Dots
Author: Peter Michler
Publisher: Springer Science & Business Media
ISBN: 3540874461
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.
Publisher: Springer Science & Business Media
ISBN: 3540874461
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.
Quantum Dot Heterostructures
Author: Dieter Bimberg
Publisher: John Wiley & Sons
ISBN: 9780471973881
Category : Science
Languages : en
Pages : 350
Book Description
Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)
Publisher: John Wiley & Sons
ISBN: 9780471973881
Category : Science
Languages : en
Pages : 350
Book Description
Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)
Semiconductor Quantum Light Sources
Author: Peter Michler
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110703491
Category : Science
Languages : en
Pages : 482
Book Description
The work provides fundamental expertise of quantum optics and photonic quantum technology with particular attention to the generation of non-classical light with semiconductor nanostructures. The book is written by experimentalists for experimentalists at various career stages: physics and engineering students, researchers in quantum optics, industry experts in quantum technology. A didactical structure is followed, having in each chapter overview and summary of the discussed topics, allowing for a quick consultation. The book covers:
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110703491
Category : Science
Languages : en
Pages : 482
Book Description
The work provides fundamental expertise of quantum optics and photonic quantum technology with particular attention to the generation of non-classical light with semiconductor nanostructures. The book is written by experimentalists for experimentalists at various career stages: physics and engineering students, researchers in quantum optics, industry experts in quantum technology. A didactical structure is followed, having in each chapter overview and summary of the discussed topics, allowing for a quick consultation. The book covers:
Tuning Semiconducting and Metallic Quantum Dots
Author: Christian von Borczyskowski
Publisher: CRC Press
ISBN: 1315340968
Category : Science
Languages : en
Pages : 237
Book Description
Nanotechnology is one of the growing areas of this century, also opening new horizons for tuning optical properties. This book introduces basic tuning schemes, including those on a single quantum object level, with an emphasis on surface and interface manipulation of semiconducting and metallic quantum dots. There are two opposing demands in current forefront applications of quantum dots as optical labels, namely high luminescence stability (suppression of luminescence intermittency) and controllable intermittency and bleaching on a single-particle level to facilitate super-resolution optical microscopy (for which Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded the 2014 Nobel Prize in Chemistry). The book discusses these contradictory demands with respect to both an understanding of the basic processes and applications. The chapters are a combination of scholarly presentation and comprehensive review and include case studies from the authors’ research, including unpublished results. Special emphasis is on a detailed understanding of spectroscopic and dynamic properties of semiconducting quantum dots. The book is suitable for senior undergraduates and researchers in the fields of optical nanoscience, materials science, and nanotechnology.
Publisher: CRC Press
ISBN: 1315340968
Category : Science
Languages : en
Pages : 237
Book Description
Nanotechnology is one of the growing areas of this century, also opening new horizons for tuning optical properties. This book introduces basic tuning schemes, including those on a single quantum object level, with an emphasis on surface and interface manipulation of semiconducting and metallic quantum dots. There are two opposing demands in current forefront applications of quantum dots as optical labels, namely high luminescence stability (suppression of luminescence intermittency) and controllable intermittency and bleaching on a single-particle level to facilitate super-resolution optical microscopy (for which Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded the 2014 Nobel Prize in Chemistry). The book discusses these contradictory demands with respect to both an understanding of the basic processes and applications. The chapters are a combination of scholarly presentation and comprehensive review and include case studies from the authors’ research, including unpublished results. Special emphasis is on a detailed understanding of spectroscopic and dynamic properties of semiconducting quantum dots. The book is suitable for senior undergraduates and researchers in the fields of optical nanoscience, materials science, and nanotechnology.
Semiconductor Nanocrystals
Author: Alexander L. Efros
Publisher: Springer Science & Business Media
ISBN: 1475736770
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.
Publisher: Springer Science & Business Media
ISBN: 1475736770
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.
Self-Assembled Quantum Dots
Author: Zhiming M Wang
Publisher: Springer Science & Business Media
ISBN: 0387741917
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
Publisher: Springer Science & Business Media
ISBN: 0387741917
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
Two-Dimensional Transition-Metal Dichalcogenides
Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Quantum Dot Optoelectronic Devices
Author: Peng Yu
Publisher: Springer Nature
ISBN: 3030358135
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book captures cutting-edge research in semiconductor quantum dot devices, discussing preparation methods and properties, and providing a comprehensive overview of their optoelectronic applications. Quantum dots (QDs), with particle sizes in the nanometer range, have unique electronic and optical properties. They have the potential to open an avenue for next-generation optoelectronic methods and devices, such as lasers, biomarker assays, field effect transistors, LEDs, photodetectors, and solar concentrators. By bringing together leaders in the various application areas, this book is both a comprehensive introduction to different kinds of QDs with unique physical properties as well as their preparation routes, and a platform for knowledge sharing and dissemination of the latest advances in a novel area of nanotechnology.
Publisher: Springer Nature
ISBN: 3030358135
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book captures cutting-edge research in semiconductor quantum dot devices, discussing preparation methods and properties, and providing a comprehensive overview of their optoelectronic applications. Quantum dots (QDs), with particle sizes in the nanometer range, have unique electronic and optical properties. They have the potential to open an avenue for next-generation optoelectronic methods and devices, such as lasers, biomarker assays, field effect transistors, LEDs, photodetectors, and solar concentrators. By bringing together leaders in the various application areas, this book is both a comprehensive introduction to different kinds of QDs with unique physical properties as well as their preparation routes, and a platform for knowledge sharing and dissemination of the latest advances in a novel area of nanotechnology.
Semiconductor Quantum Science and Technology
Author:
Publisher: Academic Press
ISBN: 0128237740
Category : Science
Languages : en
Pages : 484
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. - Leading experts present their vision on semiconductor quantum science and technology - All aspects needed to realize semiconductor quantum science and technology are explained - Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art
Publisher: Academic Press
ISBN: 0128237740
Category : Science
Languages : en
Pages : 484
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. - Leading experts present their vision on semiconductor quantum science and technology - All aspects needed to realize semiconductor quantum science and technology are explained - Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art
Quantum Nano-Photonics
Author: Baldassare Di Bartolo
Publisher: Springer
ISBN: 9402415440
Category : Science
Languages : en
Pages : 460
Book Description
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.
Publisher: Springer
ISBN: 9402415440
Category : Science
Languages : en
Pages : 460
Book Description
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.