Stochastic Calculus of Variations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Calculus of Variations PDF full book. Access full book title Stochastic Calculus of Variations by Yasushi Ishikawa. Download full books in PDF and EPUB format.

Stochastic Calculus of Variations

Stochastic Calculus of Variations PDF Author: Yasushi Ishikawa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110378078
Category : Mathematics
Languages : en
Pages : 290

Book Description
This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Stochastic Calculus of Variations

Stochastic Calculus of Variations PDF Author: Yasushi Ishikawa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110378078
Category : Mathematics
Languages : en
Pages : 290

Book Description
This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Stochastic Calculus of Variations in Mathematical Finance

Stochastic Calculus of Variations in Mathematical Finance PDF Author: Paul Malliavin
Publisher: Springer Science & Business Media
ISBN: 3540307990
Category : Business & Economics
Languages : en
Pages : 148

Book Description
Highly esteemed author Topics covered are relevant and timely

Stochastic Calculus of Variations

Stochastic Calculus of Variations PDF Author: Yasushi Ishikawa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110392321
Category : Mathematics
Languages : en
Pages : 362

Book Description
This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 1139477986
Category : Mathematics
Languages : en
Pages : 461

Book Description
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Stochastic Analysis

Stochastic Analysis PDF Author: Kiyosi Itō
Publisher: Elsevier
ISBN: 0444875883
Category : Electronic books
Languages : en
Pages : 497

Book Description
Stochastic analysis, a branch of probability theory stemming from the theory of stochastic differential equations, is becoming increasingly important in connection with partial differential equations, non-linear functional analysis, control theory and statistical mechanics.

Stochastic Integration with Jumps

Stochastic Integration with Jumps PDF Author: Klaus Bichteler
Publisher: Cambridge University Press
ISBN: 0521811295
Category : Mathematics
Languages : en
Pages : 517

Book Description
The complete theory of stochastic differential equations driven by jumps, their stability, and numerical approximation theories.

Introduction to Stochastic Calculus with Applications

Introduction to Stochastic Calculus with Applications PDF Author: Fima C. Klebaner
Publisher: Imperial College Press
ISBN: 1860945554
Category : Mathematics
Languages : en
Pages : 431

Book Description
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.

Malliavin Calculus and Stochastic Analysis

Malliavin Calculus and Stochastic Analysis PDF Author: Frederi Viens
Publisher: Springer Science & Business Media
ISBN: 1461459060
Category : Mathematics
Languages : en
Pages : 580

Book Description
The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.

Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions PDF Author: Floyd B. Hanson
Publisher: SIAM
ISBN: 9780898718638
Category : Mathematics
Languages : en
Pages : 472

Book Description
This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.

Applied Stochastic Control of Jump Diffusions

Applied Stochastic Control of Jump Diffusions PDF Author: Bernt Øksendal
Publisher: Springer Science & Business Media
ISBN: 3540698264
Category : Mathematics
Languages : en
Pages : 263

Book Description
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.