Stochastic Approximation Methods for Constrained and Unconstrained Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Approximation Methods for Constrained and Unconstrained Systems PDF full book. Access full book title Stochastic Approximation Methods for Constrained and Unconstrained Systems by H.J. Kushner. Download full books in PDF and EPUB format.

Stochastic Approximation Methods for Constrained and Unconstrained Systems

Stochastic Approximation Methods for Constrained and Unconstrained Systems PDF Author: H.J. Kushner
Publisher: Springer Science & Business Media
ISBN: 1468493523
Category : Mathematics
Languages : en
Pages : 273

Book Description
The book deals with a powerful and convenient approach to a great variety of types of problems of the recursive monte-carlo or stochastic approximation type. Such recu- sive algorithms occur frequently in stochastic and adaptive control and optimization theory and in statistical esti- tion theory. Typically, a sequence {X } of estimates of a n parameter is obtained by means of some recursive statistical th st procedure. The n estimate is some function of the n_l estimate and of some new observational data, and the aim is to study the convergence, rate of convergence, and the pa- metric dependence and other qualitative properties of the - gorithms. In this sense, the theory is a statistical version of recursive numerical analysis. The approach taken involves the use of relatively simple compactness methods. Most standard results for Kiefer-Wolfowitz and Robbins-Monro like methods are extended considerably. Constrained and unconstrained problems are treated, as is the rate of convergence problem. While the basic method is rather simple, it can be elaborated to allow a broad and deep coverage of stochastic approximation like problems. The approach, relating algorithm behavior to qualitative properties of deterministic or stochastic differ ential equations, has advantages in algorithm conceptualiza tion and design. It is often possible to obtain an intuitive understanding of algorithm behavior or qualitative dependence upon parameters, etc., without getting involved in a great deal of deta~l.

Stochastic Approximation Methods for Constrained and Unconstrained Systems

Stochastic Approximation Methods for Constrained and Unconstrained Systems PDF Author: H.J. Kushner
Publisher: Springer Science & Business Media
ISBN: 1468493523
Category : Mathematics
Languages : en
Pages : 273

Book Description
The book deals with a powerful and convenient approach to a great variety of types of problems of the recursive monte-carlo or stochastic approximation type. Such recu- sive algorithms occur frequently in stochastic and adaptive control and optimization theory and in statistical esti- tion theory. Typically, a sequence {X } of estimates of a n parameter is obtained by means of some recursive statistical th st procedure. The n estimate is some function of the n_l estimate and of some new observational data, and the aim is to study the convergence, rate of convergence, and the pa- metric dependence and other qualitative properties of the - gorithms. In this sense, the theory is a statistical version of recursive numerical analysis. The approach taken involves the use of relatively simple compactness methods. Most standard results for Kiefer-Wolfowitz and Robbins-Monro like methods are extended considerably. Constrained and unconstrained problems are treated, as is the rate of convergence problem. While the basic method is rather simple, it can be elaborated to allow a broad and deep coverage of stochastic approximation like problems. The approach, relating algorithm behavior to qualitative properties of deterministic or stochastic differ ential equations, has advantages in algorithm conceptualiza tion and design. It is often possible to obtain an intuitive understanding of algorithm behavior or qualitative dependence upon parameters, etc., without getting involved in a great deal of deta~l.

First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning PDF Author: Guanghui Lan
Publisher: Springer Nature
ISBN: 3030395685
Category : Mathematics
Languages : en
Pages : 591

Book Description
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Handbook of Stochastic Analysis and Applications

Handbook of Stochastic Analysis and Applications PDF Author: D. Kannan
Publisher: CRC Press
ISBN: 1482294702
Category : Mathematics
Languages : en
Pages : 790

Book Description
An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.

Self-Learning Control of Finite Markov Chains

Self-Learning Control of Finite Markov Chains PDF Author: A.S. Poznyak
Publisher: CRC Press
ISBN: 1482273276
Category : Technology & Engineering
Languages : en
Pages : 315

Book Description
Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.

Handbook of Simulation

Handbook of Simulation PDF Author: Jerry Banks
Publisher: John Wiley & Sons
ISBN: 9780471134039
Category : Technology & Engineering
Languages : en
Pages : 868

Book Description
Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)

Constrained Markov Decision Processes

Constrained Markov Decision Processes PDF Author: Eitan Altman
Publisher: Routledge
ISBN: 1351458248
Category : Mathematics
Languages : en
Pages : 256

Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Introduction to Stochastic Search and Optimization

Introduction to Stochastic Search and Optimization PDF Author: James C. Spall
Publisher: John Wiley & Sons
ISBN: 0471441902
Category : Mathematics
Languages : en
Pages : 620

Book Description
* Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Lectures on Stochastic Programming

Lectures on Stochastic Programming PDF Author: Alexander Shapiro
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447

Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

Proceedings of the Thirty-Third IEEE Conference on Decision and Control

Proceedings of the Thirty-Third IEEE Conference on Decision and Control PDF Author: IEEE Control Systems Society
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 1238

Book Description


Numerical Optimization

Numerical Optimization PDF Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686

Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.