Author: J. E. Fergusson
Publisher: Prentice Hall
ISBN:
Category : Chemical bonds
Languages : en
Pages : 330
Book Description
A chronicle of Jamestown, the first English colony to survive in the wilderness of the New World.
Stereochemistry and Bonding in Inorganic Chemistry
Author: J. E. Fergusson
Publisher: Prentice Hall
ISBN:
Category : Chemical bonds
Languages : en
Pages : 330
Book Description
A chronicle of Jamestown, the first English colony to survive in the wilderness of the New World.
Publisher: Prentice Hall
ISBN:
Category : Chemical bonds
Languages : en
Pages : 330
Book Description
A chronicle of Jamestown, the first English colony to survive in the wilderness of the New World.
A Textbook of Inorganic Chemistry – Volume 1
Author: Mandeep Dalal
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 482
Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 482
Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Inorganic Stereochemistry
Author: D. L. Kepert
Publisher: Springer Science & Business Media
ISBN: 3642680461
Category : Science
Languages : en
Pages : 239
Book Description
Molecular stereochemistry is a fundamental aspect of all areas of chemistry. It is especially important in inorganic chemistry where the coordination numbers are variable and occasionally quite high. The present book evolved naturally from a series of articles written by Professor Kepert for Progre88 in Inorganic Ohemi8try, elucida ting aspects of the stereochemistry of inorganic compounds of co ordination numbers 4-12. In the present volume, Professor Kepert has added new sections and synthesized these individual chapters into a unified treatment, updating his references when necessary to the most recent contributions in the literature, and inter weaving the various themes as deemed appropriate. The result is a major contribution, describing the stereochemistry of coordi nation compounds having both unidentate and multidentate ligands. The viability of the repulsion approach to stereochemistry is tested to the limit in this treatise and shown to be an extremely good way of rationalizing a diverse body of data.
Publisher: Springer Science & Business Media
ISBN: 3642680461
Category : Science
Languages : en
Pages : 239
Book Description
Molecular stereochemistry is a fundamental aspect of all areas of chemistry. It is especially important in inorganic chemistry where the coordination numbers are variable and occasionally quite high. The present book evolved naturally from a series of articles written by Professor Kepert for Progre88 in Inorganic Ohemi8try, elucida ting aspects of the stereochemistry of inorganic compounds of co ordination numbers 4-12. In the present volume, Professor Kepert has added new sections and synthesized these individual chapters into a unified treatment, updating his references when necessary to the most recent contributions in the literature, and inter weaving the various themes as deemed appropriate. The result is a major contribution, describing the stereochemistry of coordi nation compounds having both unidentate and multidentate ligands. The viability of the repulsion approach to stereochemistry is tested to the limit in this treatise and shown to be an extremely good way of rationalizing a diverse body of data.
Stereochemistry of Organometallic and Inorganic Compounds
Advanced Inorganic Chemistry
Author: Narayan S. Hosmane
Publisher: Academic Press
ISBN: 012801993X
Category : Science
Languages : en
Pages : 278
Book Description
Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). - Engaging discussion of key concepts with examples from the real world - Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry - Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes
Publisher: Academic Press
ISBN: 012801993X
Category : Science
Languages : en
Pages : 278
Book Description
Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). - Engaging discussion of key concepts with examples from the real world - Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry - Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes
Stereochemistry of Organometallic and Inorganic Compounds
Author: Bozzano G Luisa
Publisher: Elsevier
ISBN: 0444597328
Category : Science
Languages : en
Pages : 395
Book Description
The authors of this fourth volume in the series have reviewed the making and breaking of chemical bonds in a sophisticated manner. In particular, new pressures brought about by environmental concerns, larger demands for the medical and pharmaceutical sectors and economics of the market place are forcing us into demanding greater stereochemical control and better product yields for chemical reactions capable of producing useful products. The chapters are written by leading experts in this area and give excellent overviews of the strengths and weaknesses of the various methodologies.In Chapter 1 newer discoveries in such tried and true methods of C-C bond formation as alkylations and aldol reactions of metal enolates are reviewed. The author of Chapter 2 discusses the ability of ab-initio methods to justify the results of empirical observations in the field of transition metal derivatives of small molecules such as N2, CO2 and similar small molecules. Having established the strengths and weaknesses of the various approaches to such theoretical calculations, a more interesting approach to these methods is pursued, namely, their ability to predict, in those areas in which they are particularly strong and reliable, chemical and stereochemical events and/or results in advance of experiments, later carried out in the laboratory. Finally, Chapter 3 reviews the stereochemical results of electron transfer reactions in mononuclear copper compounds.
Publisher: Elsevier
ISBN: 0444597328
Category : Science
Languages : en
Pages : 395
Book Description
The authors of this fourth volume in the series have reviewed the making and breaking of chemical bonds in a sophisticated manner. In particular, new pressures brought about by environmental concerns, larger demands for the medical and pharmaceutical sectors and economics of the market place are forcing us into demanding greater stereochemical control and better product yields for chemical reactions capable of producing useful products. The chapters are written by leading experts in this area and give excellent overviews of the strengths and weaknesses of the various methodologies.In Chapter 1 newer discoveries in such tried and true methods of C-C bond formation as alkylations and aldol reactions of metal enolates are reviewed. The author of Chapter 2 discusses the ability of ab-initio methods to justify the results of empirical observations in the field of transition metal derivatives of small molecules such as N2, CO2 and similar small molecules. Having established the strengths and weaknesses of the various approaches to such theoretical calculations, a more interesting approach to these methods is pursued, namely, their ability to predict, in those areas in which they are particularly strong and reliable, chemical and stereochemical events and/or results in advance of experiments, later carried out in the laboratory. Finally, Chapter 3 reviews the stereochemical results of electron transfer reactions in mononuclear copper compounds.
Introduction to Coordination Chemistry
Author: Geoffrey A. Lawrance
Publisher: John Wiley & Sons
ISBN: 1118681401
Category : Science
Languages : en
Pages : 307
Book Description
At the heart of coordination chemistry lies the coordinate bond, in its simplest sense arising from donation of a pair of electrons from a donor atom to an empty orbital on a central metalloid or metal. Metals overwhelmingly exist as their cations, but these are rarely met ‘naked’ – they are clothed in an array of other atoms, molecules or ions that involve coordinate covalent bonds (hence the name coordination compounds). These metal ion complexes are ubiquitous in nature, and are central to an array of natural and synthetic reactions. Written in a highly readable, descriptive and accessible style Introduction to Coordination Chemistry describes properties of coordination compounds such as colour, magnetism and reactivity as well as the logic in their assembly and nomenclature. It is illustrated with many examples of the importance of coordination chemistry in real life, and includes extensive references and a bibliography. Introduction to Coordination Chemistry is a comprehensive and insightful discussion of one of the primary fields of study in Inorganic Chemistry for both undergraduate and non-specialist readers.
Publisher: John Wiley & Sons
ISBN: 1118681401
Category : Science
Languages : en
Pages : 307
Book Description
At the heart of coordination chemistry lies the coordinate bond, in its simplest sense arising from donation of a pair of electrons from a donor atom to an empty orbital on a central metalloid or metal. Metals overwhelmingly exist as their cations, but these are rarely met ‘naked’ – they are clothed in an array of other atoms, molecules or ions that involve coordinate covalent bonds (hence the name coordination compounds). These metal ion complexes are ubiquitous in nature, and are central to an array of natural and synthetic reactions. Written in a highly readable, descriptive and accessible style Introduction to Coordination Chemistry describes properties of coordination compounds such as colour, magnetism and reactivity as well as the logic in their assembly and nomenclature. It is illustrated with many examples of the importance of coordination chemistry in real life, and includes extensive references and a bibliography. Introduction to Coordination Chemistry is a comprehensive and insightful discussion of one of the primary fields of study in Inorganic Chemistry for both undergraduate and non-specialist readers.
Orbital Interaction Theory of Organic Chemistry
Author: Arvi Rauk
Publisher: John Wiley & Sons
ISBN: 0471461849
Category : Science
Languages : en
Pages : 360
Book Description
A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.
Publisher: John Wiley & Sons
ISBN: 0471461849
Category : Science
Languages : en
Pages : 360
Book Description
A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.
Molecular Visions (Organic, Inorganic, Organometallic) Molecular Model Kit #1 by Darling Models to accompany Organic Chemistry
Author: Darling Models
Publisher: McGraw-Hill Education
ISBN: 9780964883710
Category : Science
Languages : en
Pages : 0
Book Description
Molecular models are as vital a tool for the study of chemistry as calculators are for the study of mathematics. Molecular Visions models may be assembled in infinite combinations enabling the user to construct not only familiar configurations but also undiscovered possibilities. Models are intended to inspire the imagination, stimulate thought, and assist the visualization process. They present the user with a solid form of an abstract object that can otherwise only be visualized by the chemist. While chemistry textbooks use letters and graphics to describe molecules, molecular models make them "real". MOLECULAR VISIONS Organic Kit #1 is in a green plastic box, 9"x4"x2"
Publisher: McGraw-Hill Education
ISBN: 9780964883710
Category : Science
Languages : en
Pages : 0
Book Description
Molecular models are as vital a tool for the study of chemistry as calculators are for the study of mathematics. Molecular Visions models may be assembled in infinite combinations enabling the user to construct not only familiar configurations but also undiscovered possibilities. Models are intended to inspire the imagination, stimulate thought, and assist the visualization process. They present the user with a solid form of an abstract object that can otherwise only be visualized by the chemist. While chemistry textbooks use letters and graphics to describe molecules, molecular models make them "real". MOLECULAR VISIONS Organic Kit #1 is in a green plastic box, 9"x4"x2"
Nomenclature of Inorganic Chemistry
Author: International Union of Pure and Applied Chemistry
Publisher: Royal Society of Chemistry
ISBN: 0854044388
Category : Science
Languages : en
Pages : 379
Book Description
The 'Red Book' is the definitive guide for scientists requiring internationally approved inorganic nomenclature in a legal or regulatory environment.
Publisher: Royal Society of Chemistry
ISBN: 0854044388
Category : Science
Languages : en
Pages : 379
Book Description
The 'Red Book' is the definitive guide for scientists requiring internationally approved inorganic nomenclature in a legal or regulatory environment.