Statistical Relational Artificial Intelligence PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Relational Artificial Intelligence PDF full book. Access full book title Statistical Relational Artificial Intelligence by Luc De Raedt. Download full books in PDF and EPUB format.

Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence PDF Author: Luc De Raedt
Publisher: Morgan & Claypool Publishers
ISBN: 1627058427
Category : Computers
Languages : en
Pages : 191

Book Description
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence PDF Author: Luc De Raedt
Publisher: Morgan & Claypool Publishers
ISBN: 1627058427
Category : Computers
Languages : en
Pages : 191

Book Description
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence PDF Author: Luc De Kang
Publisher: Springer Nature
ISBN: 3031015746
Category : Computers
Languages : en
Pages : 175

Book Description
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning PDF Author: Lise Getoor
Publisher: MIT Press
ISBN: 0262072882
Category : Computer algorithms
Languages : en
Pages : 602

Book Description
In 'Introduction to Statistical Relational Learning', leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.

Logical and Relational Learning

Logical and Relational Learning PDF Author: Luc De Raedt
Publisher: Springer Science & Business Media
ISBN: 3540688560
Category : Computers
Languages : en
Pages : 395

Book Description
This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

An Introduction to Lifted Probabilistic Inference

An Introduction to Lifted Probabilistic Inference PDF Author: Guy Van den Broeck
Publisher: MIT Press
ISBN: 0262542595
Category : Computers
Languages : en
Pages : 455

Book Description
Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.

Markov Logic

Markov Logic PDF Author: Pedro Dechter
Publisher: Springer Nature
ISBN: 3031015495
Category : Computers
Languages : en
Pages : 145

Book Description
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion

Relational Data Mining

Relational Data Mining PDF Author: Saso Dzeroski
Publisher: Springer Science & Business Media
ISBN: 9783540422891
Category : Business & Economics
Languages : en
Pages : 422

Book Description
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming PDF Author: Luc De Raedt
Publisher: Springer
ISBN: 354078652X
Category : Computers
Languages : en
Pages : 348

Book Description
This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.

Artificial Intelligence

Artificial Intelligence PDF Author: David L. Poole
Publisher: Cambridge University Press
ISBN: 110719539X
Category : Computers
Languages : en
Pages : 821

Book Description
Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.

Hardware-Aware Probabilistic Machine Learning Models

Hardware-Aware Probabilistic Machine Learning Models PDF Author: Laura Isabel Galindez Olascoaga
Publisher: Springer Nature
ISBN: 3030740420
Category : Technology & Engineering
Languages : en
Pages : 163

Book Description
This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.