Author: N. I. Fisher
Publisher: Cambridge University Press
ISBN: 9780521456999
Category : Mathematics
Languages : en
Pages : 358
Book Description
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
Statistical Analysis of Spherical Data
Author: N. I. Fisher
Publisher: Cambridge University Press
ISBN: 9780521456999
Category : Mathematics
Languages : en
Pages : 358
Book Description
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
Publisher: Cambridge University Press
ISBN: 9780521456999
Category : Mathematics
Languages : en
Pages : 358
Book Description
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
Statistical Analysis of Circular Data
Author: N. I. Fisher
Publisher: Cambridge University Press
ISBN: 9780521568906
Category : Mathematics
Languages : en
Pages : 300
Book Description
A unified, up-to-date account of circular data-handling techniques, useful throughout science.
Publisher: Cambridge University Press
ISBN: 9780521568906
Category : Mathematics
Languages : en
Pages : 300
Book Description
A unified, up-to-date account of circular data-handling techniques, useful throughout science.
Statistical Analysis of Spherical Data
Object Oriented Data Analysis
Author: J. S. Marron
Publisher: CRC Press
ISBN: 1351189662
Category : Computers
Languages : en
Pages : 436
Book Description
Object Oriented Data Analysis is a framework that facilitates inter-disciplinary research through new terminology for discussing the often many possible approaches to the analysis of complex data. Such data are naturally arising in a wide variety of areas. This book aims to provide ways of thinking that enable the making of sensible choices. The main points are illustrated with many real data examples, based on the authors' personal experiences, which have motivated the invention of a wide array of analytic methods. While the mathematics go far beyond the usual in statistics (including differential geometry and even topology), the book is aimed at accessibility by graduate students. There is deliberate focus on ideas over mathematical formulas. J. S. Marron is the Amos Hawley Distinguished Professor of Statistics, Professor of Biostatistics, Adjunct Professor of Computer Science, Faculty Member of the Bioinformatics and Computational Biology Curriculum and Research Member of the Lineberger Cancer Center and the Computational Medicine Program, at the University of North Carolina, Chapel Hill. Ian L. Dryden is a Professor in the Department of Mathematics and Statistics at Florida International University in Miami, has served as Head of School of Mathematical Sciences at the University of Nottingham, and is joint author of the acclaimed book Statistical Shape Analysis.
Publisher: CRC Press
ISBN: 1351189662
Category : Computers
Languages : en
Pages : 436
Book Description
Object Oriented Data Analysis is a framework that facilitates inter-disciplinary research through new terminology for discussing the often many possible approaches to the analysis of complex data. Such data are naturally arising in a wide variety of areas. This book aims to provide ways of thinking that enable the making of sensible choices. The main points are illustrated with many real data examples, based on the authors' personal experiences, which have motivated the invention of a wide array of analytic methods. While the mathematics go far beyond the usual in statistics (including differential geometry and even topology), the book is aimed at accessibility by graduate students. There is deliberate focus on ideas over mathematical formulas. J. S. Marron is the Amos Hawley Distinguished Professor of Statistics, Professor of Biostatistics, Adjunct Professor of Computer Science, Faculty Member of the Bioinformatics and Computational Biology Curriculum and Research Member of the Lineberger Cancer Center and the Computational Medicine Program, at the University of North Carolina, Chapel Hill. Ian L. Dryden is a Professor in the Department of Mathematics and Statistics at Florida International University in Miami, has served as Head of School of Mathematical Sciences at the University of Nottingham, and is joint author of the acclaimed book Statistical Shape Analysis.
Applied Statistics Using SPSS, STATISTICA, MATLAB and R
Author: Joaquim P. Marques de Sá
Publisher: Springer Science & Business Media
ISBN: 3540719725
Category : Mathematics
Languages : en
Pages : 520
Book Description
Intended for anyone needing to apply statistical analysis to a large variety of science and engineering problems, this book shows how to use SPSS, MATLAB, STATISTICA and R for data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. The 2nd edition includes the R language, a new section on bootstrap estimation methods and an improved treatment of tree classifiers, plus additional examples and exercises.
Publisher: Springer Science & Business Media
ISBN: 3540719725
Category : Mathematics
Languages : en
Pages : 520
Book Description
Intended for anyone needing to apply statistical analysis to a large variety of science and engineering problems, this book shows how to use SPSS, MATLAB, STATISTICA and R for data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. The 2nd edition includes the R language, a new section on bootstrap estimation methods and an improved treatment of tree classifiers, plus additional examples and exercises.
Algebraic Methods in Statistics and Probability
Author: Marlos A. G. Viana
Publisher: American Mathematical Soc.
ISBN: 0821826875
Category : Mathematics
Languages : en
Pages : 354
Book Description
The 23 papers report recent developments in using the technique to help clarify the relationship between phenomena and data in a number of natural and social sciences. Among the topics are a coordinate-free approach to multivariate exponential families, some rank-based hypothesis tests for covariance structure and conditional independence, deconvolution density estimation on compact Lie groups, random walks on regular languages and algebraic systems of generating functions, and the extendibility of statistical models. There is no index. c. Book News Inc.
Publisher: American Mathematical Soc.
ISBN: 0821826875
Category : Mathematics
Languages : en
Pages : 354
Book Description
The 23 papers report recent developments in using the technique to help clarify the relationship between phenomena and data in a number of natural and social sciences. Among the topics are a coordinate-free approach to multivariate exponential families, some rank-based hypothesis tests for covariance structure and conditional independence, deconvolution density estimation on compact Lie groups, random walks on regular languages and algebraic systems of generating functions, and the extendibility of statistical models. There is no index. c. Book News Inc.
Encyclopedia of Mathematical Geosciences
Author: B. S. Daya Sagar
Publisher: Springer Nature
ISBN: 3030850404
Category : Science
Languages : en
Pages : 1744
Book Description
The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Publisher: Springer Nature
ISBN: 3030850404
Category : Science
Languages : en
Pages : 1744
Book Description
The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Functional Data Analysis with R and MATLAB
Author: James Ramsay
Publisher: Springer Science & Business Media
ISBN: 0387981853
Category : Computers
Languages : en
Pages : 213
Book Description
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Publisher: Springer Science & Business Media
ISBN: 0387981853
Category : Computers
Languages : en
Pages : 213
Book Description
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Springer Handbook of Engineering Statistics
Author: Hoang Pham
Publisher: Springer Nature
ISBN: 1447175034
Category : Technology & Engineering
Languages : en
Pages : 1136
Book Description
In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.
Publisher: Springer Nature
ISBN: 1447175034
Category : Technology & Engineering
Languages : en
Pages : 1136
Book Description
In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.
Circular Statistics in R
Author: Arthur Pewsey
Publisher: OUP Oxford
ISBN: 0191650773
Category : Mathematics
Languages : en
Pages : 248
Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.
Publisher: OUP Oxford
ISBN: 0191650773
Category : Mathematics
Languages : en
Pages : 248
Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.