Author: Jurgen Moser
Publisher: Princeton University Press
ISBN: 1400882699
Category : Science
Languages : en
Pages : 216
Book Description
For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
Stable and Random Motions in Dynamical Systems
Author: Jurgen Moser
Publisher: Princeton University Press
ISBN: 1400882699
Category : Science
Languages : en
Pages : 216
Book Description
For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
Publisher: Princeton University Press
ISBN: 1400882699
Category : Science
Languages : en
Pages : 216
Book Description
For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
Stable and Random Motions in Dynamical Systems: with Special Emphasis on Celestial Mechanics
Author: Jürgen Moser
Publisher:
ISBN:
Category : Celestial mechanics
Languages : en
Pages : 198
Book Description
The Description for this book, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. (AM-77), will be forthcoming.
Publisher:
ISBN:
Category : Celestial mechanics
Languages : en
Pages : 198
Book Description
The Description for this book, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. (AM-77), will be forthcoming.
Hamiltonian Dynamics and Celestial Mechanics
Author: Donald Saari
Publisher: American Mathematical Soc.
ISBN: 0821805665
Category : Mathematics
Languages : en
Pages : 250
Book Description
The symbiotic of these two topics creates a natural combination for a conference on dynamics. Topics covered include twist maps, the Aubrey-Mather theory, Arnold diffusion, qualitative and topological studies of systems, and variational methods, as well as specific topics such as Melnikov's procedure and the singularity properties of particular systems.
Publisher: American Mathematical Soc.
ISBN: 0821805665
Category : Mathematics
Languages : en
Pages : 250
Book Description
The symbiotic of these two topics creates a natural combination for a conference on dynamics. Topics covered include twist maps, the Aubrey-Mather theory, Arnold diffusion, qualitative and topological studies of systems, and variational methods, as well as specific topics such as Melnikov's procedure and the singularity properties of particular systems.
Stability and Chaos in Celestial Mechanics
Author: Alessandra Celletti
Publisher: Springer Science & Business Media
ISBN: 3540851461
Category : Science
Languages : en
Pages : 265
Book Description
This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.
Publisher: Springer Science & Business Media
ISBN: 3540851461
Category : Science
Languages : en
Pages : 265
Book Description
This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.
Adventures in Celestial Mechanics
Author: Victor G. Szebehely
Publisher: John Wiley & Sons
ISBN: 3527617795
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
A fascinating introduction to the basic principles of orbital mechanics It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principles are applied to everything from a falling stone to the Sun, from space probes to galaxies, this updated and revised Second Edition is an ideal introduction to celestial mechanics for students of astronomy, physics, and aerospace engineering. Other features that helped make the first edition of this book the text of choice in colleges and universities across North America include: * Lively historical accounts of important discoveries in celestial mechanics and the men and women who made them * Superb illustrations, photographs, charts, and tables * Helpful chapter-end examples and problem sets
Publisher: John Wiley & Sons
ISBN: 3527617795
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
A fascinating introduction to the basic principles of orbital mechanics It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principles are applied to everything from a falling stone to the Sun, from space probes to galaxies, this updated and revised Second Edition is an ideal introduction to celestial mechanics for students of astronomy, physics, and aerospace engineering. Other features that helped make the first edition of this book the text of choice in colleges and universities across North America include: * Lively historical accounts of important discoveries in celestial mechanics and the men and women who made them * Superb illustrations, photographs, charts, and tables * Helpful chapter-end examples and problem sets
Mathematical Aspects of Classical and Celestial Mechanics
Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3540489266
Category : Mathematics
Languages : en
Pages : 505
Book Description
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.
Publisher: Springer Science & Business Media
ISBN: 3540489266
Category : Mathematics
Languages : en
Pages : 505
Book Description
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.
KAM Stability and Celestial Mechanics
Author: Alessandra Celletti
Publisher: American Mathematical Soc.
ISBN: 0821841696
Category : Mathematics
Languages : en
Pages : 150
Book Description
KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. for values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ``close'' to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors.
Publisher: American Mathematical Soc.
ISBN: 0821841696
Category : Mathematics
Languages : en
Pages : 150
Book Description
KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. for values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ``close'' to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors.
Chaotic Dynamics In Hamiltonian Systems: With Applications To Celestial Mechanics
Author: Harry Dankowicz
Publisher: World Scientific
ISBN: 981449710X
Category : Science
Languages : en
Pages : 224
Book Description
In the past hundred years investigators have learned the significance of complex behavior in deterministic systems. The potential applications of this discovery are as numerous as they are encouraging.This text clearly presents the mathematical foundations of chaotic dynamics, including methods and results at the forefront of current research. The book begins with a thorough introduction to dynamical systems and their applications. It goes on to develop the theory of regular and stochastic behavior in higher-degree-of-freedom Hamiltonian systems, covering topics such as homoclinic chaos, KAM theory, the Melnikov method, and Arnold diffusion. Theoretical discussions are illustrated by a study of the dynamics of small circumasteroidal grains perturbed by solar radiation pressure. With alternative derivations and proofs of established results substituted for those in the standard literature, this work serves as an important source for researchers, students and teachers.Skillfully combining in-depth mathematics and actual physical applications, this book will be of interest to the applied mathematician, the theoretical mechanical engineer and the dynamical astronomer alike.
Publisher: World Scientific
ISBN: 981449710X
Category : Science
Languages : en
Pages : 224
Book Description
In the past hundred years investigators have learned the significance of complex behavior in deterministic systems. The potential applications of this discovery are as numerous as they are encouraging.This text clearly presents the mathematical foundations of chaotic dynamics, including methods and results at the forefront of current research. The book begins with a thorough introduction to dynamical systems and their applications. It goes on to develop the theory of regular and stochastic behavior in higher-degree-of-freedom Hamiltonian systems, covering topics such as homoclinic chaos, KAM theory, the Melnikov method, and Arnold diffusion. Theoretical discussions are illustrated by a study of the dynamics of small circumasteroidal grains perturbed by solar radiation pressure. With alternative derivations and proofs of established results substituted for those in the standard literature, this work serves as an important source for researchers, students and teachers.Skillfully combining in-depth mathematics and actual physical applications, this book will be of interest to the applied mathematician, the theoretical mechanical engineer and the dynamical astronomer alike.
Perturbation Theory
Author: Giuseppe Gaeta
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Differential and Difference Equations with Applications
Author: Sandra Pinelas
Publisher: Springer Nature
ISBN: 3030563235
Category : Mathematics
Languages : en
Pages : 754
Book Description
This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.
Publisher: Springer Nature
ISBN: 3030563235
Category : Mathematics
Languages : en
Pages : 754
Book Description
This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.