Author: K. Murawski
Publisher: World Scientific
ISBN: 9789812776631
Category : Science
Languages : en
Pages : 260
Book Description
This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.
Analytical and Numerical Methods for Wave Propagation in Fluid Media
Author: K. Murawski
Publisher: World Scientific
ISBN: 9789812776631
Category : Science
Languages : en
Pages : 260
Book Description
This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.
Publisher: World Scientific
ISBN: 9789812776631
Category : Science
Languages : en
Pages : 260
Book Description
This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.
Stability and Wave Propagation in Fluids and Solids
Author: Giovanni P. Galdi
Publisher: Springer
ISBN: 9783709130056
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.
Publisher: Springer
ISBN: 9783709130056
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.
Introduction to Wave Propagation in Nonlinear Fluids and Solids
Author: D. S. Drumheller
Publisher: Cambridge University Press
ISBN: 9780521587464
Category : Science
Languages : en
Pages : 546
Book Description
Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.
Publisher: Cambridge University Press
ISBN: 9780521587464
Category : Science
Languages : en
Pages : 546
Book Description
Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.
The Rock Physics Handbook
Author: Gary Mavko
Publisher: Cambridge University Press
ISBN: 1108420265
Category : Business & Economics
Languages : en
Pages : 741
Book Description
Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.
Publisher: Cambridge University Press
ISBN: 1108420265
Category : Business & Economics
Languages : en
Pages : 741
Book Description
Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.
Stability and Wave Propagation in Fluids and Solids
Author: International Centre for Mechanical Sciences
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.
Wave Propagation in Fluids
Author: Vincent Guinot
Publisher: John Wiley & Sons
ISBN: 1118587634
Category : Science
Languages : en
Pages : 394
Book Description
This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.
Publisher: John Wiley & Sons
ISBN: 1118587634
Category : Science
Languages : en
Pages : 394
Book Description
This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.
Mathematics of Wave Propagation
Author: Julian L. Davis
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Waves on Fluid Interfaces
Author: Richard E. Meyer
Publisher: Academic Press
ISBN: 1483265145
Category : Mathematics
Languages : en
Pages : 370
Book Description
Mathematics Research Center Symposium: Waves on Fluid Interfaces covers the proceedings of a symposium conducted by the Mathematics Research Center of the University of Wisconsin-Madison on October 18-20, 1982. The book focuses on nonlinear instabilities of classical interfaces, physical structure of real interfaces, and the challenges these reactions pose to the understanding of fluids. The selection first elaborates on finite-amplitude interfacial waves, instability of finite-amplitude interfacial waves, and finite-amplitude water waves with surface tension. Discussions focus on reformulation as an integro-differential equation, perturbation solutions, results for interfacial waves with current jump, wave of zero height, weakly nonlinear waves, and numerical methods. The text then takes a look at generalized vortex methods for free-surface flows; a review of solution methods for viscous flow in the presence of deformable boundaries; and existence criteria for fluid interfaces in the absence of gravity. The book ponders on the endothelial interface between tissue and blood, moving contact line, rupture of thin liquid films, film waves, and interfacial instabilities caused by air flow over a thin liquid layer. Topics include stability analysis of liquid film, interpretation of film instabilities, simple film, linear stability theory, inadequacy of the usual hydrodynamic model, and marcomolecule transport across the artery wall. The selection is a valuable source of data for researchers interested in the reactions of waves on fluid interfaces.
Publisher: Academic Press
ISBN: 1483265145
Category : Mathematics
Languages : en
Pages : 370
Book Description
Mathematics Research Center Symposium: Waves on Fluid Interfaces covers the proceedings of a symposium conducted by the Mathematics Research Center of the University of Wisconsin-Madison on October 18-20, 1982. The book focuses on nonlinear instabilities of classical interfaces, physical structure of real interfaces, and the challenges these reactions pose to the understanding of fluids. The selection first elaborates on finite-amplitude interfacial waves, instability of finite-amplitude interfacial waves, and finite-amplitude water waves with surface tension. Discussions focus on reformulation as an integro-differential equation, perturbation solutions, results for interfacial waves with current jump, wave of zero height, weakly nonlinear waves, and numerical methods. The text then takes a look at generalized vortex methods for free-surface flows; a review of solution methods for viscous flow in the presence of deformable boundaries; and existence criteria for fluid interfaces in the absence of gravity. The book ponders on the endothelial interface between tissue and blood, moving contact line, rupture of thin liquid films, film waves, and interfacial instabilities caused by air flow over a thin liquid layer. Topics include stability analysis of liquid film, interpretation of film instabilities, simple film, linear stability theory, inadequacy of the usual hydrodynamic model, and marcomolecule transport across the artery wall. The selection is a valuable source of data for researchers interested in the reactions of waves on fluid interfaces.
New Trends In Fluid And Solid Models - Proceedings Of The International Conference In Honour Of Brian Straughan
Author: Michele Ciarletta
Publisher: World Scientific
ISBN: 9814465909
Category : Science
Languages : en
Pages : 196
Book Description
The Proceedings of the 1st Conference on New Trends in Fluid and Solid Models provide an overview of results and new models in fluid dynamics and, in general, in continuum mechanics. The contributions refer in particular to models in continuum mechanics, phase transitions, qualitative analysis for ODEs or PDEs models, Stability in fluids and solids, wave propagation, discontinuity and shock waves, and numerical simulations.
Publisher: World Scientific
ISBN: 9814465909
Category : Science
Languages : en
Pages : 196
Book Description
The Proceedings of the 1st Conference on New Trends in Fluid and Solid Models provide an overview of results and new models in fluid dynamics and, in general, in continuum mechanics. The contributions refer in particular to models in continuum mechanics, phase transitions, qualitative analysis for ODEs or PDEs models, Stability in fluids and solids, wave propagation, discontinuity and shock waves, and numerical simulations.
Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil