A User's Guide to Spectral Sequences PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A User's Guide to Spectral Sequences PDF full book. Access full book title A User's Guide to Spectral Sequences by John McCleary. Download full books in PDF and EPUB format.

A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences PDF Author: John McCleary
Publisher: Cambridge University Press
ISBN: 0521567599
Category : Mathematics
Languages : en
Pages : 579

Book Description
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences PDF Author: John McCleary
Publisher: Cambridge University Press
ISBN: 0521567599
Category : Mathematics
Languages : en
Pages : 579

Book Description
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

Brown-Peterson Homology: An Introduction and Sampler

Brown-Peterson Homology: An Introduction and Sampler PDF Author: W. Stephen Wilson
Publisher: American Mathematical Soc.
ISBN: 0821816993
Category : Mathematics
Languages : en
Pages : 94

Book Description
Presents discussion of formal groups and an introduction to BP-homology. This book features a section on unstable operations. It is suitable for graduate students and algebraic topologists.

The Algebra of Secondary Cohomology Operations

The Algebra of Secondary Cohomology Operations PDF Author: Hans-Joachim Baues
Publisher: Springer Science & Business Media
ISBN: 3764374497
Category : Mathematics
Languages : en
Pages : 510

Book Description
The algebra of primary cohomology operations computed by the well-known Steenrod algebra is one of the most powerful tools of algebraic topology. This book computes the algebra of secondary cohomology operations which enriches the structure of the Steenrod algebra in a new and unexpected way. The book solves a long-standing problem on the algebra of secondary cohomology operations by developing a new algebraic theory of such operations. The results have strong impact on the Adams spectral sequence and hence on the computation of homotopy groups of spheres.

Saunders Mac Lane

Saunders Mac Lane PDF Author: Saunders Mac Lane
Publisher: CRC Press
ISBN: 1439863644
Category : Mathematics
Languages : en
Pages : 375

Book Description
Saunders Mac Lane was an extraordinary mathematician, a dedicated teacher, and a good citizen who cared deeply about the values of science and education. In his autobiography, he gives us a glimpse of his "life and times," mixing the highly personal with professional observations. His recollections bring to life a century of extraordinary accomplis

Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres PDF Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418

Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Cyclic Homology

Cyclic Homology PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3662113899
Category : Mathematics
Languages : en
Pages : 525

Book Description
From the reviews: "This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics." European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.

Rings, Modules, and Algebras in Stable Homotopy Theory

Rings, Modules, and Algebras in Stable Homotopy Theory PDF Author: Anthony D. Elmendorf
Publisher: American Mathematical Soc.
ISBN: 0821843036
Category : Mathematics
Languages : en
Pages : 265

Book Description
This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a

A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions

A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions PDF Author: Alice Hedenlund
Publisher: American Mathematical Society
ISBN: 1470468786
Category : Mathematics
Languages : en
Pages : 146

Book Description
View the abstract.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Society
ISBN: 1470462869
Category : Mathematics
Languages : en
Pages : 265

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Spectral Sequence Constructors in Algebra and Topology

Spectral Sequence Constructors in Algebra and Topology PDF Author: Donald W. Barnes
Publisher: American Mathematical Soc.
ISBN: 0821823191
Category : Mathematics
Languages : en
Pages : 187

Book Description
In this monograph, the theory of spectral sequence constructors is developed, the four main constructions of the spectral sequence of a Hopf algebra extension are discussed and compared, and a uniqueness theorem for the spectral sequence is proved. A similar study is made of the spectral sequence of a fibration, and its uniqueness is also established.