Author: Naum I͡Akovlevich Vilenkin
Publisher: American Mathematical Soc.
ISBN: 9780821815724
Category : Mathematics
Languages : en
Pages : 613
Book Description
A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.
Special Functions and the Theory of Group Representations
Author: Naum I͡Akovlevich Vilenkin
Publisher: American Mathematical Soc.
ISBN: 9780821815724
Category : Mathematics
Languages : en
Pages : 613
Book Description
A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.
Publisher: American Mathematical Soc.
ISBN: 9780821815724
Category : Mathematics
Languages : en
Pages : 613
Book Description
A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.
Special Functions and the Theory of Group Representations
Author: Naum I͡Akovlevich Vilenkin
Publisher: American Mathematical Soc.
ISBN: 9780821886526
Category : Mathematics
Languages : en
Pages : 628
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886526
Category : Mathematics
Languages : en
Pages : 628
Book Description
Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518
Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518
Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.
Special Functions and Linear Representations of Lie Groups
Author: Jean Dieudonné
Publisher: American Mathematical Soc.
ISBN: 0821816926
Category : Mathematics
Languages : en
Pages : 65
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821816926
Category : Mathematics
Languages : en
Pages : 65
Book Description
Group Theory in Physics
Author: Wu-Ki Tung
Publisher: World Scientific
ISBN: 9971966565
Category : Science
Languages : en
Pages : 368
Book Description
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.
Publisher: World Scientific
ISBN: 9971966565
Category : Science
Languages : en
Pages : 368
Book Description
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.
Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 940113538X
Category : Mathematics
Languages : en
Pages : 635
Book Description
This is the first of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of classical orthogonal polynomials and special functions which are related to representations of groups of matrices of second order and of groups of triangular matrices of third order. This material forms the basis of many results concerning classical special functions such as Bessel, MacDonald, Hankel, Whittaker, hypergeometric, and confluent hypergeometric functions, and different classes of orthogonal polynomials, including those having a discrete variable. Many new results are given. The volume is self-contained, since an introductory section presents basic required material from algebra, topology, functional analysis and group theory. For research mathematicians, physicists and engineers.
Publisher: Springer Science & Business Media
ISBN: 940113538X
Category : Mathematics
Languages : en
Pages : 635
Book Description
This is the first of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of classical orthogonal polynomials and special functions which are related to representations of groups of matrices of second order and of groups of triangular matrices of third order. This material forms the basis of many results concerning classical special functions such as Bessel, MacDonald, Hankel, Whittaker, hypergeometric, and confluent hypergeometric functions, and different classes of orthogonal polynomials, including those having a discrete variable. Many new results are given. The volume is self-contained, since an introductory section presents basic required material from algebra, topology, functional analysis and group theory. For research mathematicians, physicists and engineers.
Theory of Group Representations
Author: M.A. Naimark
Publisher: Springer
ISBN: 9781461381440
Category : Mathematics
Languages : en
Pages : 0
Book Description
Author's Preface to the Russian Edition This book is written for advanced students, for predoctoral graduate stu dents, and for professional scientists-mathematicians, physicists, and chemists-who desire to study the foundations of the theory of finite dimensional representations of groups. We suppose that the reader is familiar with linear algebra, with elementary mathematical analysis, and with the theory of analytic functions. All else that is needed for reading this book is set down in the book where it is needed or is provided for by references to standard texts. The first two chapters are devoted to the algebraic aspects of the theory of representations and to representations of finite groups. Later chapters take up the principal facts about representations of topological groups, as well as the theory of Lie groups and Lie algebras and their representations. We have arranged our material to help the reader to master first the easier parts of the theory and later the more difficult. In the author's opinion, however, it is algebra that lies at the heart of the whole theory. To keep the size of the book within reasonable bounds, we have limited ourselves to finite-dimensional representations. The author intends to devote another volume to a more general theory, which includes infinite dimensional representations.
Publisher: Springer
ISBN: 9781461381440
Category : Mathematics
Languages : en
Pages : 0
Book Description
Author's Preface to the Russian Edition This book is written for advanced students, for predoctoral graduate stu dents, and for professional scientists-mathematicians, physicists, and chemists-who desire to study the foundations of the theory of finite dimensional representations of groups. We suppose that the reader is familiar with linear algebra, with elementary mathematical analysis, and with the theory of analytic functions. All else that is needed for reading this book is set down in the book where it is needed or is provided for by references to standard texts. The first two chapters are devoted to the algebraic aspects of the theory of representations and to representations of finite groups. Later chapters take up the principal facts about representations of topological groups, as well as the theory of Lie groups and Lie algebras and their representations. We have arranged our material to help the reader to master first the easier parts of the theory and later the more difficult. In the author's opinion, however, it is algebra that lies at the heart of the whole theory. To keep the size of the book within reasonable bounds, we have limited ourselves to finite-dimensional representations. The author intends to devote another volume to a more general theory, which includes infinite dimensional representations.
Introduction to the Theory of Banach Representations of Groups
Author: Yurii I. Lyubich
Publisher: Birkhäuser
ISBN: 3034891695
Category : Science
Languages : en
Pages : 231
Book Description
The theory of group representations plays an important roie in modern mathematics and its applica~ions to natural sciences. In the compulsory university curriculum it is included as a branch of algebra, dealing with representations of finite groups (see, for example, the textbook of A. I. Kostrikin [25]). The representation theory for compact, locally compact Abelian, and Lie groups is co vered in graduate courses, concentrated around functional analysis. The author of the present boo~ has lectured for many years on functional analysis at Khar'kov University. He subsequently con tinued these lectures in the form of a graduate course on the theory of group representations, in which special attention was devoted to a retrospective exposition of operator theory and harmo nic analysis of functions from the standpoint of representation theory. In this approach it was natural to consider not only uni tary, but also Banach representations, and not only representations of groups, but also of semigroups.
Publisher: Birkhäuser
ISBN: 3034891695
Category : Science
Languages : en
Pages : 231
Book Description
The theory of group representations plays an important roie in modern mathematics and its applica~ions to natural sciences. In the compulsory university curriculum it is included as a branch of algebra, dealing with representations of finite groups (see, for example, the textbook of A. I. Kostrikin [25]). The representation theory for compact, locally compact Abelian, and Lie groups is co vered in graduate courses, concentrated around functional analysis. The author of the present boo~ has lectured for many years on functional analysis at Khar'kov University. He subsequently con tinued these lectures in the form of a graduate course on the theory of group representations, in which special attention was devoted to a retrospective exposition of operator theory and harmo nic analysis of functions from the standpoint of representation theory. In this approach it was natural to consider not only uni tary, but also Banach representations, and not only representations of groups, but also of semigroups.
Representation Theory and Noncommutative Harmonic Analysis II
Author: A.A. Kirillov
Publisher: Springer Science & Business Media
ISBN: 3662097567
Category : Mathematics
Languages : en
Pages : 274
Book Description
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Publisher: Springer Science & Business Media
ISBN: 3662097567
Category : Mathematics
Languages : en
Pages : 274
Book Description
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.