Spatial Data Analysis by Example: Categorical and directional data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Spatial Data Analysis by Example: Categorical and directional data PDF full book. Access full book title Spatial Data Analysis by Example: Categorical and directional data by Graham J. G. Upton. Download full books in PDF and EPUB format.

Spatial Data Analysis by Example: Categorical and directional data

Spatial Data Analysis by Example: Categorical and directional data PDF Author: Graham J. G. Upton
Publisher:
ISBN:
Category : Spatial analysis (Statistics)
Languages : en
Pages : 430

Book Description


Spatial Data Analysis by Example: Categorical and directional data

Spatial Data Analysis by Example: Categorical and directional data PDF Author: Graham J. G. Upton
Publisher:
ISBN:
Category : Spatial analysis (Statistics)
Languages : en
Pages : 430

Book Description


Measurement Errors in Surveys

Measurement Errors in Surveys PDF Author: Paul P. Biemer
Publisher: John Wiley & Sons
ISBN: 9780471692805
Category : Mathematics
Languages : en
Pages : 802

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book will be an aid to survey statisticians and to research workers who must work with survey data." –Short Book Reviews, International Statistical Institute Measurement Errors in Surveys documents the current state of the field, reports new research findings, and promotes interdisciplinary exchanges in modeling, assessing, and reducing measurement errors in surveys. Providing a fundamental approach to measurement errors, the book features sections on the questionnaire, respondents and responses, interviewers and other means of data collection, the respondent-interviewer relationship, and the effects of measurement errors on estimation and data analysis.

Methodological Developments in Data Linkage

Methodological Developments in Data Linkage PDF Author: Katie Harron
Publisher: John Wiley & Sons
ISBN: 1119072484
Category : Medical
Languages : en
Pages : 286

Book Description
A comprehensive compilation of new developments in data linkage methodology The increasing availability of large administrative databases has led to a dramatic rise in the use of data linkage, yet the standard texts on linkage are still those which describe the seminal work from the 1950-60s, with some updates. Linkage and analysis of data across sources remains problematic due to lack of discriminatory and accurate identifiers, missing data and regulatory issues. Recent developments in data linkage methodology have concentrated on bias and analysis of linked data, novel approaches to organising relationships between databases and privacy-preserving linkage. Methodological Developments in Data Linkage brings together a collection of contributions from members of the international data linkage community, covering cutting edge methodology in this field. It presents opportunities and challenges provided by linkage of large and often complex datasets, including analysis problems, legal and security aspects, models for data access and the development of novel research areas. New methods for handling uncertainty in analysis of linked data, solutions for anonymised linkage and alternative models for data collection are also discussed. Key Features: Presents cutting edge methods for a topic of increasing importance to a wide range of research areas, with applications to data linkage systems internationally Covers the essential issues associated with data linkage today Includes examples based on real data linkage systems, highlighting the opportunities, successes and challenges that the increasing availability of linkage data provides Novel approach incorporates technical aspects of both linkage, management and analysis of linked data This book will be of core interest to academics, government employees, data holders, data managers, analysts and statisticians who use administrative data. It will also appeal to researchers in a variety of areas, including epidemiology, biostatistics, social statistics, informatics, policy and public health.

Exploring Data Tables, Trends, and Shapes

Exploring Data Tables, Trends, and Shapes PDF Author: David C. Hoaglin
Publisher: John Wiley & Sons
ISBN: 1118150694
Category : Mathematics
Languages : en
Pages : 564

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Exploring Data Tables, Trends, and Shapes (EDTTS) was written as a companion volume to the same editors' book, Understanding Robust and Exploratory Data Analysis (UREDA). Whereas UREDA is a collection of exploratory and resistant methods of estimation and display, EDTTS goes a step further, describing multivariate and more complicated techniques . . . I feel that the authors have made a very significant contribution in the area of multivariate nonparametric methods. This book [is] a valuable source of reference to researchers in the area." —Technometrics "This edited volume . . . provides an important theoretical and philosophical extension to the currently popular statistical area of Exploratory Data Analysis, which seeks to reveal structure, or simple descriptions, in data . . . It is . . . an important reference volume which any statistical library should consider seriously." —The Statistician This newly available and affordably priced paperback version of Exploring Data Tables, Trends, and Shapes presents major advances in exploratory data analysis and robust regression methods and explains the techniques, relating them to classical methods. The book addresses the role of exploratory and robust techniques in the overall data-analytic enterprise, and it also presents new methods such as fitting by organized comparisons using the square combining table and identifying extreme cells in a sizable contingency table with probabilistic and exploratory approaches. The book features a chapter on using robust regression in less technical language than available elsewhere. Conceptual support for each technique is also provided.

Statistics for Spatio-Temporal Data

Statistics for Spatio-Temporal Data PDF Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 1119243068
Category : Mathematics
Languages : en
Pages : 596

Book Description
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Applied Logistic Regression

Applied Logistic Regression PDF Author: David W. Hosmer, Jr.
Publisher: John Wiley & Sons
ISBN: 0471654027
Category : Mathematics
Languages : en
Pages : 397

Book Description
From the reviews of the First Edition. "An interesting, useful, and well-written book on logistic regression models . . . Hosmer and Lemeshow have used very little mathematics, have presented difficult concepts heuristically and through illustrative examples, and have included references." —Choice "Well written, clearly organized, and comprehensive . . . the authors carefully walk the reader through the estimation of interpretation of coefficients from a wide variety of logistic regression models . . . their careful explication of the quantitative re-expression of coefficients from these various models is excellent." —Contemporary Sociology "An extremely well-written book that will certainly prove an invaluable acquisition to the practicing statistician who finds other literature on analysis of discrete data hard to follow or heavily theoretical." —The Statistician In this revised and updated edition of their popular book, David Hosmer and Stanley Lemeshow continue to provide an amazingly accessible introduction to the logistic regression model while incorporating advances of the last decade, including a variety of software packages for the analysis of data sets. Hosmer and Lemeshow extend the discussion from biostatistics and epidemiology to cutting-edge applications in data mining and machine learning, guiding readers step-by-step through the use of modeling techniques for dichotomous data in diverse fields. Ample new topics and expanded discussions of existing material are accompanied by a wealth of real-world examples-with extensive data sets available over the Internet.

Finite Mixture Models

Finite Mixture Models PDF Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419

Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.

Measurement in Social Psychology

Measurement in Social Psychology PDF Author: Hart Blanton
Publisher: Routledge
ISBN: 0429841167
Category : Psychology
Languages : en
Pages : 278

Book Description
Although best known for experimental methods, social psychology also has a strong tradition of measurement. This volume seeks to highlight this tradition by introducing readers to measurement strategies that help drive social psychological research and theory development. The books opens with an analysis of the measurement technique that dominates most of the social sciences, self-report. Chapter 1 presents a conceptual framework for interpreting the data generated from self-report, which it uses to provide practical advice on writing strong and structured self-report items. From there, attention is drawn to the many other innovative measurement and data-collection techniques that have helped expand the range of theories social psychologists test. Chapters 2 through 6 introduce techniques designed to measure the internal psychological states of individual respondents, with strategies that can stand alone or complement anything obtained via self-report. Included are chapters on implicit, elicitation, and diary approaches to collecting response data from participants, as well as neurological and psychobiological approaches to inferring underlying mechanisms. The remaining chapters introduce creative data-collection techniques, focusing particular attention on the rich forms of data humans often leave behind. Included are chapters on textual analysis, archival analysis, geocoding, and social media harvesting. The many methods covered in this book complement one another, such that the full volume provides researchers with a powerful toolset to help them better explore what is "social" about human behavior.

Smoothing of Multivariate Data

Smoothing of Multivariate Data PDF Author: Jussi Sakari Klemelä
Publisher: John Wiley & Sons
ISBN: 0470425660
Category : Mathematics
Languages : en
Pages : 641

Book Description
An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.

A Primer on Experiments with Mixtures

A Primer on Experiments with Mixtures PDF Author: John A. Cornell
Publisher: John Wiley & Sons
ISBN: 0470907428
Category : Mathematics
Languages : en
Pages : 376

Book Description
The concise yet authoritative presentation of key techniques for basic mixtures experiments Inspired by the author's bestselling advanced book on the topic, A Primer on Experiments with Mixtures provides an introductory presentation of the key principles behind experimenting with mixtures. Outlining useful techniques through an applied approach with examples from real research situations, the book supplies a comprehensive discussion of how to design and set up basic mixture experiments, then analyze the data and draw inferences from results. Drawing from his extensive experience teaching the topic at various levels, the author presents the mixture experiments in an easy-to-follow manner that is void of unnecessary formulas and theory. Succinct presentations explore key methods and techniques for carrying out basic mixture experiments, including: Designs and models for exploring the entire simplex factor space, with coverage of simplex-lattice and simplex-centroid designs, canonical polynomials, the plotting of individual residuals, and axial designs Multiple constraints on the component proportions in the form of lower and/or upper bounds, introducing L-Pseudocomponents, multicomponent constraints, and multiple lattice designs for major and minor component classifications Techniques for analyzing mixture data such as model reduction and screening components, as well as additional topics such as measuring the leverage of certain design points Models containing ratios of the components, Cox's mixture polynomials, and the fitting of a slack variable model A review of least squares and the analysis of variance for fitting data Each chapter concludes with a summary and appendices with details on the technical aspects of the material. Throughout the book, exercise sets with selected answers allow readers to test their comprehension of the material, and References and Recommended Reading sections outline further resources for study of the presented topics. A Primer on Experiments with Mixtures is an excellent book for one-semester courses on mixture designs and can also serve as a supplement for design of experiments courses at the upper-undergraduate and graduate levels. It is also a suitable reference for practitioners and researchers who have an interest in experiments with mixtures and would like to learn more about the related mixture designs and models.