Author: T. N. Shorey
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Exponential Diophantine Equations
Author: T. N. Shorey
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Notes from the International Autumn School on Computational Number Theory
Author: Ilker Inam
Publisher: Springer
ISBN: 3030125580
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume collects lecture notes and research articles from the International Autumn School on Computational Number Theory, which was held at the Izmir Institute of Technology from October 30th to November 3rd, 2017 in Izmir, Turkey. Written by experts in computational number theory, the chapters cover a variety of the most important aspects of the field. By including timely research and survey articles, the text also helps pave a path to future advancements. Topics include: Modular forms L-functions The modular symbols algorithm Diophantine equations Nullstellensatz Eisenstein series Notes from the International Autumn School on Computational Number Theory will offer graduate students an invaluable introduction to computational number theory. In addition, it provides the state-of-the-art of the field, and will thus be of interest to researchers interested in the field as well.
Publisher: Springer
ISBN: 3030125580
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume collects lecture notes and research articles from the International Autumn School on Computational Number Theory, which was held at the Izmir Institute of Technology from October 30th to November 3rd, 2017 in Izmir, Turkey. Written by experts in computational number theory, the chapters cover a variety of the most important aspects of the field. By including timely research and survey articles, the text also helps pave a path to future advancements. Topics include: Modular forms L-functions The modular symbols algorithm Diophantine equations Nullstellensatz Eisenstein series Notes from the International Autumn School on Computational Number Theory will offer graduate students an invaluable introduction to computational number theory. In addition, it provides the state-of-the-art of the field, and will thus be of interest to researchers interested in the field as well.
Diophantine Approximation on Linear Algebraic Groups
Author: Michel Waldschmidt
Publisher: Springer Science & Business Media
ISBN: 3662115697
Category : Mathematics
Languages : en
Pages : 649
Book Description
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
Publisher: Springer Science & Business Media
ISBN: 3662115697
Category : Mathematics
Languages : en
Pages : 649
Book Description
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
Exponential Sums and their Applications
Author: N.M Korobov
Publisher: Springer Science & Business Media
ISBN: 9401580324
Category : Mathematics
Languages : en
Pages : 223
Book Description
The method of exponential sums is a general method enabling the solution of a wide range of problems in the theory of numbers and its applications. This volume presents an exposition of the fundamentals of the theory with the help of examples which show how exponential sums arise and how they are applied in problems of number theory and its applications. The material is divided into three chapters which embrace the classical results of Gauss, and the methods of Weyl, Mordell and Vinogradov; the traditional applications of exponential sums to the distribution of fractional parts, the estimation of the Riemann zeta function; and the theory of congruences and Diophantine equations. Some new applications of exponential sums are also included. It is assumed that the reader has a knowledge of the fundamentals of mathematical analysis and of elementary number theory.
Publisher: Springer Science & Business Media
ISBN: 9401580324
Category : Mathematics
Languages : en
Pages : 223
Book Description
The method of exponential sums is a general method enabling the solution of a wide range of problems in the theory of numbers and its applications. This volume presents an exposition of the fundamentals of the theory with the help of examples which show how exponential sums arise and how they are applied in problems of number theory and its applications. The material is divided into three chapters which embrace the classical results of Gauss, and the methods of Weyl, Mordell and Vinogradov; the traditional applications of exponential sums to the distribution of fractional parts, the estimation of the Riemann zeta function; and the theory of congruences and Diophantine equations. Some new applications of exponential sums are also included. It is assumed that the reader has a knowledge of the fundamentals of mathematical analysis and of elementary number theory.
The Art of Mathematical Problem Solving
Author: Richard M. Beekman
Publisher: Lulu.com
ISBN: 1329428900
Category : Science
Languages : en
Pages : 268
Book Description
Mathematics is a fine art, like painting, sculpture, or music. This book teaches the art of solving challenging mathematics problems. Part I presents a general process for solving problems. Part II contains 35 difficult and challenging mathematics problems with complete solutions. The goal is to teach the reader how to proceed from an initial state of "panic and fear" to finding a beautiful and elegant solution to a problem.
Publisher: Lulu.com
ISBN: 1329428900
Category : Science
Languages : en
Pages : 268
Book Description
Mathematics is a fine art, like painting, sculpture, or music. This book teaches the art of solving challenging mathematics problems. Part I presents a general process for solving problems. Part II contains 35 difficult and challenging mathematics problems with complete solutions. The goal is to teach the reader how to proceed from an initial state of "panic and fear" to finding a beautiful and elegant solution to a problem.
Solving the Pell Equation
Author: Michael Jacobson
Publisher: Springer Science & Business Media
ISBN: 038784922X
Category : Mathematics
Languages : en
Pages : 504
Book Description
Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation. The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.
Publisher: Springer Science & Business Media
ISBN: 038784922X
Category : Mathematics
Languages : en
Pages : 504
Book Description
Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation. The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.
Algorithms for Diophantine Equations
Author: Benne M. M. De Weger
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 232
Book Description
The Diophantine Frobenius Problem
Author: Jorge L. Ramírez Alfonsín
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Hilbert's Tenth Problem
Author: I︠U︡riĭ V. Matii︠a︡sevich
Publisher: MIT Press
ISBN: 9780262132954
Category : Computers
Languages : en
Pages : 296
Book Description
This book presents the full, self-contained negative solution of Hilbert's 10th problem.
Publisher: MIT Press
ISBN: 9780262132954
Category : Computers
Languages : en
Pages : 296
Book Description
This book presents the full, self-contained negative solution of Hilbert's 10th problem.