Author: M. Dryja
Publisher:
ISBN: 9781332961429
Category : Mathematics
Languages : en
Pages : 30
Book Description
Excerpt from Some Domain Decomposition Algorithms for Elliptic Problems This paper is organized as follows. In Section 2, we review some of the ideas of substructuring that are very important in the development of computational methods of structural engineering. This discussion naturally leads to matrix splittings, which provide preconditioners for the large lin ear systems of algebraic equations, which arises in finite element work. In section 3, we discuss different Schwarz methods and some general tools for estimating their rates of convergence. In the concluding sections, we show how two types of domain decomposition algorithms can be analyzed by using relatively simple tools of mathematical and finite element analysis. While we can do much with linear algebra, we ultimately have to resort to tools of analysis in order to complete the proofs of our main results. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Some Domain Decomposition Algorithms for Elliptic Problems (Classic Reprint)
Author: M. Dryja
Publisher:
ISBN: 9781332961429
Category : Mathematics
Languages : en
Pages : 30
Book Description
Excerpt from Some Domain Decomposition Algorithms for Elliptic Problems This paper is organized as follows. In Section 2, we review some of the ideas of substructuring that are very important in the development of computational methods of structural engineering. This discussion naturally leads to matrix splittings, which provide preconditioners for the large lin ear systems of algebraic equations, which arises in finite element work. In section 3, we discuss different Schwarz methods and some general tools for estimating their rates of convergence. In the concluding sections, we show how two types of domain decomposition algorithms can be analyzed by using relatively simple tools of mathematical and finite element analysis. While we can do much with linear algebra, we ultimately have to resort to tools of analysis in order to complete the proofs of our main results. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher:
ISBN: 9781332961429
Category : Mathematics
Languages : en
Pages : 30
Book Description
Excerpt from Some Domain Decomposition Algorithms for Elliptic Problems This paper is organized as follows. In Section 2, we review some of the ideas of substructuring that are very important in the development of computational methods of structural engineering. This discussion naturally leads to matrix splittings, which provide preconditioners for the large lin ear systems of algebraic equations, which arises in finite element work. In section 3, we discuss different Schwarz methods and some general tools for estimating their rates of convergence. In the concluding sections, we show how two types of domain decomposition algorithms can be analyzed by using relatively simple tools of mathematical and finite element analysis. While we can do much with linear algebra, we ultimately have to resort to tools of analysis in order to complete the proofs of our main results. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Domain Decomposition
Author: Barry Smith
Publisher: Cambridge University Press
ISBN: 9780521602860
Category : Computers
Languages : en
Pages : 244
Book Description
Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.
Publisher: Cambridge University Press
ISBN: 9780521602860
Category : Computers
Languages : en
Pages : 244
Book Description
Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.
An Introduction to Domain Decomposition Methods
Author: Victorita Dolean
Publisher: SIAM
ISBN: 1611974054
Category : Science
Languages : en
Pages : 242
Book Description
The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?
Publisher: SIAM
ISBN: 1611974054
Category : Science
Languages : en
Pages : 242
Book Description
The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?
Large-Scale Scientific Computing
Author: Ivan Lirkov
Publisher: Springer
ISBN: 3642125352
Category : Computers
Languages : en
Pages : 855
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Large-Scale Scientific Computations, LSSC 2009, held in Sozopol, Bulgaria, in June 2009. The 93 revised full papers presented together with 5 plenary and invited papers were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers are organized in topical sections on multilevel and multiscale preconditioning methods multilevel and multiscale methods for industrial applications, environmental modeling, control and uncertain systems, application of metaheuristics to large scale problems, monte carlo: methods, applications, distributed computing, grid and scientific and engineering applications, reliable numerical methods for differential equations, novel applications of optimization ideas to the numerical Solution of PDEs, and contributed talks.
Publisher: Springer
ISBN: 3642125352
Category : Computers
Languages : en
Pages : 855
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Large-Scale Scientific Computations, LSSC 2009, held in Sozopol, Bulgaria, in June 2009. The 93 revised full papers presented together with 5 plenary and invited papers were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers are organized in topical sections on multilevel and multiscale preconditioning methods multilevel and multiscale methods for industrial applications, environmental modeling, control and uncertain systems, application of metaheuristics to large scale problems, monte carlo: methods, applications, distributed computing, grid and scientific and engineering applications, reliable numerical methods for differential equations, novel applications of optimization ideas to the numerical Solution of PDEs, and contributed talks.
Parallel Numerical Algorithms
Author: David E. Keyes
Publisher: Springer Science & Business Media
ISBN: 9401154120
Category : Mathematics
Languages : en
Pages : 403
Book Description
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
Publisher: Springer Science & Business Media
ISBN: 9401154120
Category : Mathematics
Languages : en
Pages : 403
Book Description
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
Parallelism in Matrix Computations
Author: Efstratios Gallopoulos
Publisher: Springer
ISBN: 940177188X
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
Publisher: Springer
ISBN: 940177188X
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
Mathematical Reviews
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Some Domain Decomposition Algorithms for Elliptic Problems
Author: O Widlund
Publisher: Palala Press
ISBN: 9781379115632
Category :
Languages : en
Pages : 26
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Palala Press
ISBN: 9781379115632
Category :
Languages : en
Pages : 26
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Tutorial on Elliptic PDE Solvers and Their Parallelization
Author: Craig C. Douglas
Publisher: SIAM
ISBN: 9780898718171
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
Publisher: SIAM
ISBN: 9780898718171
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.