Author: Manuel Blanco
Publisher: Woodhead Publishing
ISBN: 0081005172
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
After decades of research and development, concentrating solar thermal (CST) power plants (also known as concentrating solar power (CSP) and as Solar Thermal Electricity or STE systems) are now starting to be widely commercialized. Indeed, the IEA predicts that by 2050, with sufficient support over ten percent of global electricity could be produced by concentrating solar thermal power plants. However, CSP plants are just but one of the many possible applications of CST systems. Advances in Concentrating Solar Thermal Research and Technology provides detailed information on the latest advances in CST systems research and technology. It promotes a deep understanding of the challenges the different CST technologies are confronted with, of the research that is taking place worldwide to address those challenges, and of the impact that the innovation that this research is fostering could have on the emergence of new CST components and concepts. It is anticipated that these developments will substantially increase the cost-competiveness of commercial CST solutions and reshape the technological landscape of both CST technologies and the CST industry. After an introductory chapter, the next three parts of the book focus on key CST plant components, from mirrors and receivers to thermal storage. The final two parts of the book address operation and control and innovative CST system concepts. - Contains authoritative reviews of CST research taking place around the world - Discusses the impact this research is fostering on the emergence of new CST components and concepts that will substantially increase the cost-competitiveness of CST power - Covers both major CST plant components and system-wide issues
Advances in Concentrating Solar Thermal Research and Technology
Author: Manuel Blanco
Publisher: Woodhead Publishing
ISBN: 0081005172
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
After decades of research and development, concentrating solar thermal (CST) power plants (also known as concentrating solar power (CSP) and as Solar Thermal Electricity or STE systems) are now starting to be widely commercialized. Indeed, the IEA predicts that by 2050, with sufficient support over ten percent of global electricity could be produced by concentrating solar thermal power plants. However, CSP plants are just but one of the many possible applications of CST systems. Advances in Concentrating Solar Thermal Research and Technology provides detailed information on the latest advances in CST systems research and technology. It promotes a deep understanding of the challenges the different CST technologies are confronted with, of the research that is taking place worldwide to address those challenges, and of the impact that the innovation that this research is fostering could have on the emergence of new CST components and concepts. It is anticipated that these developments will substantially increase the cost-competiveness of commercial CST solutions and reshape the technological landscape of both CST technologies and the CST industry. After an introductory chapter, the next three parts of the book focus on key CST plant components, from mirrors and receivers to thermal storage. The final two parts of the book address operation and control and innovative CST system concepts. - Contains authoritative reviews of CST research taking place around the world - Discusses the impact this research is fostering on the emergence of new CST components and concepts that will substantially increase the cost-competitiveness of CST power - Covers both major CST plant components and system-wide issues
Publisher: Woodhead Publishing
ISBN: 0081005172
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
After decades of research and development, concentrating solar thermal (CST) power plants (also known as concentrating solar power (CSP) and as Solar Thermal Electricity or STE systems) are now starting to be widely commercialized. Indeed, the IEA predicts that by 2050, with sufficient support over ten percent of global electricity could be produced by concentrating solar thermal power plants. However, CSP plants are just but one of the many possible applications of CST systems. Advances in Concentrating Solar Thermal Research and Technology provides detailed information on the latest advances in CST systems research and technology. It promotes a deep understanding of the challenges the different CST technologies are confronted with, of the research that is taking place worldwide to address those challenges, and of the impact that the innovation that this research is fostering could have on the emergence of new CST components and concepts. It is anticipated that these developments will substantially increase the cost-competiveness of commercial CST solutions and reshape the technological landscape of both CST technologies and the CST industry. After an introductory chapter, the next three parts of the book focus on key CST plant components, from mirrors and receivers to thermal storage. The final two parts of the book address operation and control and innovative CST system concepts. - Contains authoritative reviews of CST research taking place around the world - Discusses the impact this research is fostering on the emergence of new CST components and concepts that will substantially increase the cost-competitiveness of CST power - Covers both major CST plant components and system-wide issues
Handbook of Research on Solar Energy Systems and Technologies
Author: Anwar, Sohail
Publisher: IGI Global
ISBN: 146661997X
Category : Science
Languages : en
Pages : 615
Book Description
The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.
Publisher: IGI Global
ISBN: 146661997X
Category : Science
Languages : en
Pages : 615
Book Description
The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.
Solar Energy Research and Development
Author: United States. Congress. Joint Committee on Atomic Energy
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 870
Book Description
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 870
Book Description
Renewable Energy and Wildlife Conservation
Author: Christopher E. Moorman
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Physics of Solar Energy
Author: C. Julian Chen
Publisher: John Wiley & Sons
ISBN: 1118044592
Category : Science
Languages : en
Pages : 372
Book Description
PHYSICS OF Solar Energy Science/Physics/Energy The definitive guide to the science of solar energy You hold in your hands the first, and only, truly comprehensive guide to the most abundant and most promising source of alternative energy—solar power. In recent years, all major countries in the world have been calling for an energy revolution. The renewable energy industry will drive a vigorous expansion of the global economy and create more “green” jobs. The use of fossil fuels to power our way of living is moving toward an inevitable end, with sources of coal, petroleum, and natural gas being fiercely depleted. Solar energy offers a ubiquitous, inexhaustible, clean, and highly efficient way of meeting the energy needs of the twenty-first century. This book is designed to give the reader a solid footing in the general and basic physics of solar energy, which will be the basis of research and development in new solar engineering technologies in the years to come. As solar technologies like solar cells, solar thermal power generators, solar water heaters, solar photochemistry applications, and solar space heating-cooling systems become more and more prominent, it has become essential that the next generation of energy experts—both in academia and industry—have a one-stop resource for learning the basics behind the science, applications, and technologies afforded by solar energy. This book fills that need by laying the groundwork for the projected rapid expansion of future solar projects.
Publisher: John Wiley & Sons
ISBN: 1118044592
Category : Science
Languages : en
Pages : 372
Book Description
PHYSICS OF Solar Energy Science/Physics/Energy The definitive guide to the science of solar energy You hold in your hands the first, and only, truly comprehensive guide to the most abundant and most promising source of alternative energy—solar power. In recent years, all major countries in the world have been calling for an energy revolution. The renewable energy industry will drive a vigorous expansion of the global economy and create more “green” jobs. The use of fossil fuels to power our way of living is moving toward an inevitable end, with sources of coal, petroleum, and natural gas being fiercely depleted. Solar energy offers a ubiquitous, inexhaustible, clean, and highly efficient way of meeting the energy needs of the twenty-first century. This book is designed to give the reader a solid footing in the general and basic physics of solar energy, which will be the basis of research and development in new solar engineering technologies in the years to come. As solar technologies like solar cells, solar thermal power generators, solar water heaters, solar photochemistry applications, and solar space heating-cooling systems become more and more prominent, it has become essential that the next generation of energy experts—both in academia and industry—have a one-stop resource for learning the basics behind the science, applications, and technologies afforded by solar energy. This book fills that need by laying the groundwork for the projected rapid expansion of future solar projects.
How Solar Energy Became Cheap
Author: Gregory F. Nemet
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.
National Solar Energy Research, Development, and Demonstration Program--definition Report. Solar Energy Research, Development, and Demonstration Act of 1974. Oversight Hearings
Author: United States. Congress. House. Committee on Science and Technology. Subcommittee on Energy Research, Development, and Demonstration
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 530
Book Description
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 530
Book Description
Taming the Sun
Author: Varun Sivaram
Publisher: MIT Press
ISBN: 0262537079
Category : Political Science
Languages : en
Pages : 391
Book Description
How solar could spark a clean-energy transition through transformative innovation—creative financing, revolutionary technologies, and flexible energy systems. Solar energy, once a niche application for a limited market, has become the cheapest and fastest-growing power source on earth. What's more, its potential is nearly limitless—every hour the sun beams down more energy than the world uses in a year. But in Taming the Sun, energy expert Varun Sivaram warns that the world is not yet equipped to harness erratic sunshine to meet most of its energy needs. And if solar's current surge peters out, prospects for replacing fossil fuels and averting catastrophic climate change will dim. Innovation can brighten those prospects, Sivaram explains, drawing on firsthand experience and original research spanning science, business, and government. Financial innovation is already enticing deep-pocketed investors to fund solar projects around the world, from the sunniest deserts to the poorest villages. Technological innovation could replace today's solar panels with coatings as cheap as paint and employ artificial photosynthesis to store intermittent sunshine as convenient fuels. And systemic innovation could add flexibility to the world's power grids and other energy systems so they can dependably channel the sun's unreliable energy. Unleashing all this innovation will require visionary public policy: funding researchers developing next-generation solar technologies, refashioning energy systems and economic markets, and putting together a diverse clean energy portfolio. Although solar can't power the planet by itself, it can be the centerpiece of a global clean energy revolution. A Council on Foreign Relations Book
Publisher: MIT Press
ISBN: 0262537079
Category : Political Science
Languages : en
Pages : 391
Book Description
How solar could spark a clean-energy transition through transformative innovation—creative financing, revolutionary technologies, and flexible energy systems. Solar energy, once a niche application for a limited market, has become the cheapest and fastest-growing power source on earth. What's more, its potential is nearly limitless—every hour the sun beams down more energy than the world uses in a year. But in Taming the Sun, energy expert Varun Sivaram warns that the world is not yet equipped to harness erratic sunshine to meet most of its energy needs. And if solar's current surge peters out, prospects for replacing fossil fuels and averting catastrophic climate change will dim. Innovation can brighten those prospects, Sivaram explains, drawing on firsthand experience and original research spanning science, business, and government. Financial innovation is already enticing deep-pocketed investors to fund solar projects around the world, from the sunniest deserts to the poorest villages. Technological innovation could replace today's solar panels with coatings as cheap as paint and employ artificial photosynthesis to store intermittent sunshine as convenient fuels. And systemic innovation could add flexibility to the world's power grids and other energy systems so they can dependably channel the sun's unreliable energy. Unleashing all this innovation will require visionary public policy: funding researchers developing next-generation solar technologies, refashioning energy systems and economic markets, and putting together a diverse clean energy portfolio. Although solar can't power the planet by itself, it can be the centerpiece of a global clean energy revolution. A Council on Foreign Relations Book
Photovoltaic Solar Energy
Author: Angèle Reinders
Publisher: John Wiley & Sons
ISBN: 111892746X
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.
Publisher: John Wiley & Sons
ISBN: 111892746X
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.
Solar Collectors, Energy Storage, and Materials
Author: Francis DeWinter
Publisher: MIT Press
ISBN: 9780262041041
Category : Science
Languages : en
Pages : 1116
Book Description
Solar Collectors, Energy Storage, and Materials covers the materials and basic components needed for solar thermal energy systems. Using thermal performance and durability as the major criteria, the twenty six chapters emphasize the modeling and assessment of devices rather than their application or cost. Each part begins with an overview and concludes with an assessment of current issues and opportunities. The contributors have been careful to document failures as well as successes in materials research. This is the fifth volume in a series that distills the results of the intensive research on and development of solar thermal energy conversion technologies from 1975 to 1986. Francis de Winter is President of the Altas Corporation, Santa Cruz, California and a member of the Santa Cruz Energy Advisory Committee. Contents: Solar Collectors. Collector Concepts and Designs. Optical Theory and Modeling of Solar Collectors. Thermal Theory and Modeling of Solar Collectors. Testing and Evaluation of Stationary Collectors. Testing and Evaluation of Tracking Collectors. Optical Research and Development. Collector Thermal Research and Development. Collector Engineering Research and Development. Solar Pond Research and Development. Reliability and Durability of Solar Collectors. Environmental Degradation of Low-Cost Solar Collectors. Energy Storage for Solar Systems. Storage Concepts and Design. Analytical and Numerical Modeling of Thermal Conversion Systems. Testing and Evaluation of Thermal Energy Storage Systems. Storage Research and Development. Materials for Solar Technologies. Materials for Solar Collector Concepts and Designs. Theory and Modeling of Solar Materials. Testing and Evaluation of Solar Materials. Exposure Testing and Evaluation of Performance Degradation. Solar Materials Research and Development.
Publisher: MIT Press
ISBN: 9780262041041
Category : Science
Languages : en
Pages : 1116
Book Description
Solar Collectors, Energy Storage, and Materials covers the materials and basic components needed for solar thermal energy systems. Using thermal performance and durability as the major criteria, the twenty six chapters emphasize the modeling and assessment of devices rather than their application or cost. Each part begins with an overview and concludes with an assessment of current issues and opportunities. The contributors have been careful to document failures as well as successes in materials research. This is the fifth volume in a series that distills the results of the intensive research on and development of solar thermal energy conversion technologies from 1975 to 1986. Francis de Winter is President of the Altas Corporation, Santa Cruz, California and a member of the Santa Cruz Energy Advisory Committee. Contents: Solar Collectors. Collector Concepts and Designs. Optical Theory and Modeling of Solar Collectors. Thermal Theory and Modeling of Solar Collectors. Testing and Evaluation of Stationary Collectors. Testing and Evaluation of Tracking Collectors. Optical Research and Development. Collector Thermal Research and Development. Collector Engineering Research and Development. Solar Pond Research and Development. Reliability and Durability of Solar Collectors. Environmental Degradation of Low-Cost Solar Collectors. Energy Storage for Solar Systems. Storage Concepts and Design. Analytical and Numerical Modeling of Thermal Conversion Systems. Testing and Evaluation of Thermal Energy Storage Systems. Storage Research and Development. Materials for Solar Technologies. Materials for Solar Collector Concepts and Designs. Theory and Modeling of Solar Materials. Testing and Evaluation of Solar Materials. Exposure Testing and Evaluation of Performance Degradation. Solar Materials Research and Development.