Sliding Mode Control of the Reaction Wheel Pendulum PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sliding Mode Control of the Reaction Wheel Pendulum PDF full book. Access full book title Sliding Mode Control of the Reaction Wheel Pendulum by Zhitong Luo. Download full books in PDF and EPUB format.

Sliding Mode Control of the Reaction Wheel Pendulum

Sliding Mode Control of the Reaction Wheel Pendulum PDF Author: Zhitong Luo
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Book Description
The Reaction Wheel Pendulum (RWP) is an interesting nonlinear system. A prototypical control problem for the RWP is to stabilize it around the upright position starting from the bottom, which is generally divided into at least 2 phases: (1) Swing-up phase: where the pendulum is swung up and moves toward the upright position. (2) Stabilization phase: here, the pendulum is controlled to be balanced around the upright position. Previous studies mainly focused on an energy method in swing-up phase and a linearization method in stabilization phase. However, several limitations exist. The energy method in swing-up mode usually takes a long time to approach the upright position. Moreover, its trajectory is not controlled which prevents further extensions. The linearization method in the stabilization phase, can only work for a very small range of angles around the equilibrium point, limiting its applicability. In this thesis, we took the 2nd order state space model and solved it for a constant torque input generating the family of phase-plane trajectories (see Appendix A). Therefore, we are able to plan the motion of the reaction wheel pendulum in the phase plane and a sliding mode controller may be implemented around these trajectories. The control strategy presented here is divided into three phases. (1) In the swing up phase a switching torque controller is designed to oscillate the pendulum until the system's energy is enough to drive the system to the upright position. Our approach is more generic than previous approaches; (2) In the catching phase a sliding surface is designed in the phase plane based on the zero torque trajectories, and a 2nd order sliding mode controller is implemented to drive the pendulum moving along the sliding surface, which improves the robustness compared to the previous method in which the controller switches to stabilization mode when it reaches a pre-defined region. (3) In the stabilization phase a 2nd order sliding mode integral controller is used to solve the balancing problem, which has the potential to stabilize the pendulum in a larger angular region when compared to the previous linearization methods. At last we combine the 3 phases together in a combined strategy. Both simulation results and experimental results are shown. The control unit is National Instruments CompactRIO 9014 with NI 9505 module for module driving and NI 9411 module for encoding. The Reaction Wheel Pendulum is built by Quanser Consulting Inc. and placed in UT's Advanced Mechatronics Lab.

Sliding Mode Control of the Reaction Wheel Pendulum

Sliding Mode Control of the Reaction Wheel Pendulum PDF Author: Zhitong Luo
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Book Description
The Reaction Wheel Pendulum (RWP) is an interesting nonlinear system. A prototypical control problem for the RWP is to stabilize it around the upright position starting from the bottom, which is generally divided into at least 2 phases: (1) Swing-up phase: where the pendulum is swung up and moves toward the upright position. (2) Stabilization phase: here, the pendulum is controlled to be balanced around the upright position. Previous studies mainly focused on an energy method in swing-up phase and a linearization method in stabilization phase. However, several limitations exist. The energy method in swing-up mode usually takes a long time to approach the upright position. Moreover, its trajectory is not controlled which prevents further extensions. The linearization method in the stabilization phase, can only work for a very small range of angles around the equilibrium point, limiting its applicability. In this thesis, we took the 2nd order state space model and solved it for a constant torque input generating the family of phase-plane trajectories (see Appendix A). Therefore, we are able to plan the motion of the reaction wheel pendulum in the phase plane and a sliding mode controller may be implemented around these trajectories. The control strategy presented here is divided into three phases. (1) In the swing up phase a switching torque controller is designed to oscillate the pendulum until the system's energy is enough to drive the system to the upright position. Our approach is more generic than previous approaches; (2) In the catching phase a sliding surface is designed in the phase plane based on the zero torque trajectories, and a 2nd order sliding mode controller is implemented to drive the pendulum moving along the sliding surface, which improves the robustness compared to the previous method in which the controller switches to stabilization mode when it reaches a pre-defined region. (3) In the stabilization phase a 2nd order sliding mode integral controller is used to solve the balancing problem, which has the potential to stabilize the pendulum in a larger angular region when compared to the previous linearization methods. At last we combine the 3 phases together in a combined strategy. Both simulation results and experimental results are shown. The control unit is National Instruments CompactRIO 9014 with NI 9505 module for module driving and NI 9411 module for encoding. The Reaction Wheel Pendulum is built by Quanser Consulting Inc. and placed in UT's Advanced Mechatronics Lab.

The Reaction Wheel Pendulum

The Reaction Wheel Pendulum PDF Author: Daniel J. Block
Publisher: Morgan & Claypool Publishers
ISBN: 1598291955
Category : Technology & Engineering
Languages : en
Pages : 112

Book Description
This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, to the nonlinear control problem of swingup control. We also discuss hybrid and switching control, which is useful for switching between the swingup and balance controllers. We also discuss important practical issues such as friction modeling and friction compensation, quantization of sensor signals, and saturation. This monograph can be used as a supplement for courses in feedback control at the undergraduate level, courses in mechatronics, or courses in linear and nonlinear state space control at the graduate level. It can also be used as a laboratory manual and as a reference for research in nonlinear control.

Emerging Trends in Sliding Mode Control

Emerging Trends in Sliding Mode Control PDF Author: Axaykumar Mehta
Publisher: Springer Nature
ISBN: 9811586136
Category : Technology & Engineering
Languages : en
Pages : 429

Book Description
This book compiles recent developments on sliding mode control theory and its applications. Each chapter presented in the book proposes new dimension in the sliding mode control theory such as higher order sliding mode control, event triggered sliding mode control, networked control, higher order discrete-time sliding mode control and sliding mode control for multi-agent systems. Special emphasis has been given to practical solutions to design involving new types of sliding mode control. This book is a reference guide for graduate students and researchers working in the domain for designing sliding mode controllers. The book is also useful to professional engineers working in the field to design robust controllers for various applications.

Sliding Mode Control of an Inverted Pendulum

Sliding Mode Control of an Inverted Pendulum PDF Author: Tan Lee Hong
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages : 336

Book Description


The Reaction Wheel Pendulum

The Reaction Wheel Pendulum PDF Author: Daniel Jerome Block
Publisher:
ISBN: 9781598294484
Category : Pendulum
Languages : en
Pages : 105

Book Description


Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics

Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics PDF Author: Xinghuo Yu
Publisher: Springer
ISBN: 3319182900
Category : Technology & Engineering
Languages : en
Pages : 460

Book Description
This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.

Motion Control of Underactuated Mechanical Systems

Motion Control of Underactuated Mechanical Systems PDF Author: Javier Moreno-Valenzuela
Publisher: Springer
ISBN: 3319583190
Category : Technology & Engineering
Languages : en
Pages : 230

Book Description
This volume is the first to present a unified perspective on the control of underactuated mechanical systems. Based on real-time implementation of parameter identification, this book provides a variety of algorithms for the Furuta pendulum and the inertia wheel pendulum, which are two-degrees-of-freedom mechanical systems. Specifically, this work addresses and solves the problem of motion control via trajectory tracking in one joint coordinate while another joint is regulated. Besides, discussions on extensions to higher degrees-of-freedom systems are given. The book, aimed at control engineers as well as graduate students, ranges from the problem of parameter identification of the studied systems to the practical implementation of sophisticated motion control algorithms. Offering real-world solutions to manage the control of underactuated systems, this book provides a concise tutorial on recent breakthroughs in the field, original procedures to achieve bounding of the error trajectories, convergence and gain tuning guidelines.

The Reaction Wheel Pendulum

The Reaction Wheel Pendulum PDF Author: Patricia Soto-Hoffmann
Publisher:
ISBN:
Category :
Languages : en
Pages : 82

Book Description


Proceedings of the 2015 Chinese Intelligent Systems Conference

Proceedings of the 2015 Chinese Intelligent Systems Conference PDF Author: Yingmin Jia
Publisher: Springer
ISBN: 3662483866
Category : Technology & Engineering
Languages : en
Pages : 650

Book Description
This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC’15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

Self-Oscillations in Dynamic Systems

Self-Oscillations in Dynamic Systems PDF Author: Luis T. Aguilar
Publisher: Birkhäuser
ISBN: 3319233033
Category : Science
Languages : en
Pages : 163

Book Description
This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.