Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft PDF full book. Access full book title Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft by Travis Kenneth Vetter. Download full books in PDF and EPUB format.

Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft

Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft PDF Author: Travis Kenneth Vetter
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Book Description


Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft

Sliding-mode Control Applied for Robust Control of a Highly Unstable Aircraft PDF Author: Travis Kenneth Vetter
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Book Description


Sliding Mode Control of a Nonlinear Ducted-fan UAV Model

Sliding Mode Control of a Nonlinear Ducted-fan UAV Model PDF Author: Maryam Bakhtiari-Nejad
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description


Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems

Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems PDF Author: Scott R. Wells
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 624

Book Description
Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. An overview of reconfigurable flight control is given, including a review of the current state-of-the-art within the subdisciplines of fault detection parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears promising due its property of invariance to matched uncertainty. An overview of SMC is given and its properties are demonstrated. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate SISO and MIMO designs. The third application is a linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1002

Book Description


Sliding Mode Control and Observation

Sliding Mode Control and Observation PDF Author: Yuri Shtessel
Publisher: Springer Science & Business Media
ISBN: 0817648933
Category : Science
Languages : en
Pages : 369

Book Description
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbance observer based control *Numerous applications, including reusable launch vehicle and satellite formation control, blood glucose regulation, and car steering control are used as case studies Sliding Mode Control and Observation is aimed at graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems, while being of interest to a wider audience of graduate students in electrical/mechanical/aerospace engineering and applied mathematics, as well as researchers in electrical, computer, chemical, civil, mechanical, aeronautical, and industrial engineering, applied mathematicians, control engineers, and physicists. Sliding Mode Control and Observation provides the necessary tools for graduate students, researchers and engineers to robustly control complex and uncertain nonlinear dynamical systems. Exercises provided at the end of each chapter make this an ideal text for an advanced course taught in control theory.

Advances and Applications in Sliding Mode Control systems

Advances and Applications in Sliding Mode Control systems PDF Author: Ahmad Taher Azar
Publisher: Springer
ISBN: 3319111736
Category : Technology & Engineering
Languages : en
Pages : 592

Book Description
This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.

Sliding Mode Control Using MATLAB

Sliding Mode Control Using MATLAB PDF Author: Jinkun Liu
Publisher: Academic Press
ISBN: 0128026707
Category : Technology & Engineering
Languages : en
Pages : 348

Book Description
Sliding Mode Control Using MATLAB provides many sliding mode controller design examples, along with simulation examples and MATLABĀ® programs. Following the review of sliding mode control, the book includes sliding mode control for continuous systems, robust adaptive sliding mode control, sliding mode control for underactuated systems, backstepping, and dynamic surface sliding mode control, sliding mode control based on filter and observer, sliding mode control for discrete systems, fuzzy sliding mode control, neural network sliding mode control, and sliding mode control for robot manipulators. The contents of each chapter are independent, providing readers with information they can use for their own needs. It is suitable for the readers who work on mechanical and electronic engineering, electrical automation engineering, etc., and can also be used as a teaching reference for universities. - Provides many sliding mode controller design examples to help readers solve their research and design problems - Includes various, implementable, robust sliding mode control design solutions from engineering applications - Provides the simulation examples and MATLAB programs for each sliding mode control algorithm

Advances in Guidance, Navigation and Control

Advances in Guidance, Navigation and Control PDF Author: Liang Yan
Publisher: Springer Nature
ISBN: 981158155X
Category : Technology & Engineering
Languages : en
Pages : 5416

Book Description
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.

Introduction to Linear Control Systems

Introduction to Linear Control Systems PDF Author: Yazdan Bavafa-Toosi
Publisher: Academic Press
ISBN: 012812749X
Category : Technology & Engineering
Languages : en
Pages : 1135

Book Description
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

Flight Stability and Automatic Control

Flight Stability and Automatic Control PDF Author: Robert C. Nelson
Publisher:
ISBN:
Category : History
Languages : en
Pages : 464

Book Description
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.