Author: Bom Soo Kim
Publisher: CRC Press
ISBN: 1000845494
Category : Science
Languages : en
Pages : 394
Book Description
Makes use of the first principle methods and associated analytic tools that are complementary to the majority of skyrmion literature that relies on phenomenological and numerical approaches Contains comprehensive background materials that are organized based on symmetry principles Puts together various interdisciplinary subjects in terms of a coherent language with clear illustrations and detailed comments so that readers can verify mathematical manipulations throughout the text
Skyrmions and Hall Transport
Author: Bom Soo Kim
Publisher: CRC Press
ISBN: 1000845494
Category : Science
Languages : en
Pages : 394
Book Description
Makes use of the first principle methods and associated analytic tools that are complementary to the majority of skyrmion literature that relies on phenomenological and numerical approaches Contains comprehensive background materials that are organized based on symmetry principles Puts together various interdisciplinary subjects in terms of a coherent language with clear illustrations and detailed comments so that readers can verify mathematical manipulations throughout the text
Publisher: CRC Press
ISBN: 1000845494
Category : Science
Languages : en
Pages : 394
Book Description
Makes use of the first principle methods and associated analytic tools that are complementary to the majority of skyrmion literature that relies on phenomenological and numerical approaches Contains comprehensive background materials that are organized based on symmetry principles Puts together various interdisciplinary subjects in terms of a coherent language with clear illustrations and detailed comments so that readers can verify mathematical manipulations throughout the text
Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi
Author: Tomoyuki Yokouchi
Publisher: Springer
ISBN: 9813293853
Category : Computers
Languages : en
Pages : 94
Book Description
This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based on molecular beam epitaxy, ion-beam microfabrication and micromagnetic simulation. The book also reviews key aspects of B20-type MnSi chiral magnets, which host magnetic skyrmions, nanoscale objects formed by helical spatial spin structures. Readers are then introduced to cutting-edge findings on the material. Furthermore, by reviewing the author’s successful experiments, the book provides readers with a valuable update on the latest achievements in the measurement and fabrication of magnetic materials in spintronics.
Publisher: Springer
ISBN: 9813293853
Category : Computers
Languages : en
Pages : 94
Book Description
This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based on molecular beam epitaxy, ion-beam microfabrication and micromagnetic simulation. The book also reviews key aspects of B20-type MnSi chiral magnets, which host magnetic skyrmions, nanoscale objects formed by helical spatial spin structures. Readers are then introduced to cutting-edge findings on the material. Furthermore, by reviewing the author’s successful experiments, the book provides readers with a valuable update on the latest achievements in the measurement and fabrication of magnetic materials in spintronics.
Magnetic Skyrmions and Their Applications
Author: Giovanni Finocchio
Publisher: Woodhead Publishing
ISBN: 012820933X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed. - Covers background knowledge and details the basic principles of magnetic skyrmions, including materials, characterization, statics and dynamics - Reviews materials for skyrmion stabilization including bulk materials and interface-dominated multilayer materials - Describes both well-known and unconventional applications of magnetic skyrmions, such as memristors and reservoir computing
Publisher: Woodhead Publishing
ISBN: 012820933X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed. - Covers background knowledge and details the basic principles of magnetic skyrmions, including materials, characterization, statics and dynamics - Reviews materials for skyrmion stabilization including bulk materials and interface-dominated multilayer materials - Describes both well-known and unconventional applications of magnetic skyrmions, such as memristors and reservoir computing
The Multifaceted Skyrmion
Author: Gerald Edward Brown
Publisher: World Scientific
ISBN: 9814280704
Category : Science
Languages : en
Pages : 460
Book Description
1. Skyrmions and nuclei / R.A. Battye, N.S. Manton and P.M. Sutcliffe -- 2. Electromagnetic form factors of the nucleon in chiral soliton models / G. Holzwarth -- 3. Exotic baryon resonances in the Skyrme model / D. Diakonov and V. Petrov -- 4. Heavy-quark skyrmions / N.N. Scoccola -- 5. Skyrmion approach to finite density and temperature / B.-Y. Park and V. Vento -- 6. Half-skyrmion hadronic matter at high density / H.K. Lee and M. Rho -- 7. Superqualitons : baryons in dense QCD / D.K. Hong -- 8. Rotational symmetry breaking in baby skyrme models / M. Karliner and I. Hen -- 9. Spin and isospin : exotic order in quantum hall ferromagnets / S.M. Girvin -- 10. Noncommutative skyrmions in quantum hall systems / Z.F. Ezawa and G. Tsitsishvili -- 11. Skyrmions and merons in bilayer quantum hall system / K. Moon -- 12. Spin and pseudospin textures in quantum hall systems / H.A. Fertig and L. Brey -- 13. Half-skyrmion theory for high-temperature superconductivity / T. Morinari -- 14. Deconfined quantum critical points / T. Senthil [und weitere] -- 15. Skyrmion and string theory / S. Sugimoto -- 16. Holographic baryons / P. Yi -- 17. The Cheshire cat principle from holography / H.B. Nielsen and I. Zahed -- 18. Baryon physics in a five-dimensional model of hadrons / A. Pomarol and A. Wulzer
Publisher: World Scientific
ISBN: 9814280704
Category : Science
Languages : en
Pages : 460
Book Description
1. Skyrmions and nuclei / R.A. Battye, N.S. Manton and P.M. Sutcliffe -- 2. Electromagnetic form factors of the nucleon in chiral soliton models / G. Holzwarth -- 3. Exotic baryon resonances in the Skyrme model / D. Diakonov and V. Petrov -- 4. Heavy-quark skyrmions / N.N. Scoccola -- 5. Skyrmion approach to finite density and temperature / B.-Y. Park and V. Vento -- 6. Half-skyrmion hadronic matter at high density / H.K. Lee and M. Rho -- 7. Superqualitons : baryons in dense QCD / D.K. Hong -- 8. Rotational symmetry breaking in baby skyrme models / M. Karliner and I. Hen -- 9. Spin and isospin : exotic order in quantum hall ferromagnets / S.M. Girvin -- 10. Noncommutative skyrmions in quantum hall systems / Z.F. Ezawa and G. Tsitsishvili -- 11. Skyrmions and merons in bilayer quantum hall system / K. Moon -- 12. Spin and pseudospin textures in quantum hall systems / H.A. Fertig and L. Brey -- 13. Half-skyrmion theory for high-temperature superconductivity / T. Morinari -- 14. Deconfined quantum critical points / T. Senthil [und weitere] -- 15. Skyrmion and string theory / S. Sugimoto -- 16. Holographic baryons / P. Yi -- 17. The Cheshire cat principle from holography / H.B. Nielsen and I. Zahed -- 18. Baryon physics in a five-dimensional model of hadrons / A. Pomarol and A. Wulzer
Emergent Transport Properties of Magnetic Topological Insulator Heterostructures
Author: Kenji Yasuda
Publisher: Springer Nature
ISBN: 981157183X
Category : Computers
Languages : en
Pages : 109
Book Description
This book reveals unique transport phenomena and functionalities in topological insulators coupled with magnetism and superconductivity. Topological insulators are a recently discovered class of materials that possess a spin-momentum-locked surface state. Their exotic spin texture makes them an exciting platform for investigating emergent phenomena, especially when coupled with magnetism or superconductivity. Focusing on the strong correlation between electricity and magnetism in magnetic topological insulators, the author presents original findings on current-direction-dependent nonreciprocal resistance, current-induced magnetization reversal and chiral edge conduction at the domain wall. In addition, he demonstrates how the coupling between superconductivity and topological surface state leads to substantial nonreciprocal resistance. The author also elucidates the origins of these phenomena and deepens readers’ understanding of the topologically nontrivial electronic state. The book includes several works which are published in top journals and were selected for the President’s Award by the University of Tokyo and for the Ikushi Prize, awarded to distinguished Ph.D. students in Japan.
Publisher: Springer Nature
ISBN: 981157183X
Category : Computers
Languages : en
Pages : 109
Book Description
This book reveals unique transport phenomena and functionalities in topological insulators coupled with magnetism and superconductivity. Topological insulators are a recently discovered class of materials that possess a spin-momentum-locked surface state. Their exotic spin texture makes them an exciting platform for investigating emergent phenomena, especially when coupled with magnetism or superconductivity. Focusing on the strong correlation between electricity and magnetism in magnetic topological insulators, the author presents original findings on current-direction-dependent nonreciprocal resistance, current-induced magnetization reversal and chiral edge conduction at the domain wall. In addition, he demonstrates how the coupling between superconductivity and topological surface state leads to substantial nonreciprocal resistance. The author also elucidates the origins of these phenomena and deepens readers’ understanding of the topologically nontrivial electronic state. The book includes several works which are published in top journals and were selected for the President’s Award by the University of Tokyo and for the Ikushi Prize, awarded to distinguished Ph.D. students in Japan.
Frontiers in Physics - 2017 & 2018 Editor's Choice
Author: Thomas Beyer
Publisher: Frontiers Media SA
ISBN: 2889458040
Category :
Languages : en
Pages : 190
Book Description
Launched in 2013, Frontiers in Physics consists of 18 specialties covering all areas of research in physics. With over 500 published manuscripts, the journal is now indexed in SCIE with the first impact factor coming in 2019. Frontiers in Physics aims to become the largest and most cited open access multidisciplinary physics journal. This eBook collects what the Specialty Chief Editors of the journal believed were the most interesting manuscripts published over the past two years. It is a nice collection, which will offer the reader the chance to have a quick overview of the specialties of the journal and offer a glimpse into the state of the art of physics. We must confess that it has been quite challenging to select only one article per specialty section given the many important manuscripts published by the journal in 2017 and 2018. We invite our reader to have a look at the journal homepage and browse what we have published so far. It includes articles on topics very different from each other, written by both early career scientists and well-known researchers, ranging from the indisputable advance of the field to the more bold. We hope you enjoy reading our first edition of the Frontiers in Physics Editor's Choice eBook! Professor Alex Hansen (Field Chief Editor) and Dr Claudio Bogazzi (Journal Manager)
Publisher: Frontiers Media SA
ISBN: 2889458040
Category :
Languages : en
Pages : 190
Book Description
Launched in 2013, Frontiers in Physics consists of 18 specialties covering all areas of research in physics. With over 500 published manuscripts, the journal is now indexed in SCIE with the first impact factor coming in 2019. Frontiers in Physics aims to become the largest and most cited open access multidisciplinary physics journal. This eBook collects what the Specialty Chief Editors of the journal believed were the most interesting manuscripts published over the past two years. It is a nice collection, which will offer the reader the chance to have a quick overview of the specialties of the journal and offer a glimpse into the state of the art of physics. We must confess that it has been quite challenging to select only one article per specialty section given the many important manuscripts published by the journal in 2017 and 2018. We invite our reader to have a look at the journal homepage and browse what we have published so far. It includes articles on topics very different from each other, written by both early career scientists and well-known researchers, ranging from the indisputable advance of the field to the more bold. We hope you enjoy reading our first edition of the Frontiers in Physics Editor's Choice eBook! Professor Alex Hansen (Field Chief Editor) and Dr Claudio Bogazzi (Journal Manager)
Curvilinear Micromagnetism
Author: Denys Makarov
Publisher: Springer Nature
ISBN: 3031090861
Category : Science
Languages : en
Pages : 420
Book Description
This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including both fabrication and characterization. With its coverage of fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.
Publisher: Springer Nature
ISBN: 3031090861
Category : Science
Languages : en
Pages : 420
Book Description
This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including both fabrication and characterization. With its coverage of fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.
Skyrmions
Author: J. Ping Liu
Publisher: CRC Press
ISBN: 1315284162
Category : Science
Languages : en
Pages : 502
Book Description
"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.
Publisher: CRC Press
ISBN: 1315284162
Category : Science
Languages : en
Pages : 502
Book Description
"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.
Journal of the Physical Society of Japan
Chiral and Topological Nature of Magnetic Skyrmions
Author: Shilei Zhang
Publisher: Springer
ISBN: 3319982524
Category : Science
Languages : en
Pages : 134
Book Description
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.
Publisher: Springer
ISBN: 3319982524
Category : Science
Languages : en
Pages : 134
Book Description
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.