Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 720
Book Description
Scientific and Technical Aerospace Reports
Advances in Steam Turbines for Modern Power Plants
Author: Tadashi Tanuma
Publisher: Woodhead Publishing
ISBN: 0081003250
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Advances in Steam Turbines for Modern Power Plants provides an authoritative review of steam turbine design optimization, analysis and measurement, the development of steam turbine blades, and other critical components, including turbine retrofitting and steam turbines for renewable power plants. As a very large proportion of the world's electricity is currently generated in systems driven by steam turbines, (and will most likely remain the case in the future) with steam turbines operating in fossil-fuel, cogeneration, combined cycle, integrated gasification combined cycle, geothermal, solar thermal, and nuclear plants across the world, this book provides a comprehensive assessment of the research and work that has been completed over the past decades. - Presents an in-depth review on steam turbine design optimization, analysis, and measurement - Written by a range of experts in the area - Provides an overview of turbine retrofitting and advanced applications in power generation
Publisher: Woodhead Publishing
ISBN: 0081003250
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Advances in Steam Turbines for Modern Power Plants provides an authoritative review of steam turbine design optimization, analysis and measurement, the development of steam turbine blades, and other critical components, including turbine retrofitting and steam turbines for renewable power plants. As a very large proportion of the world's electricity is currently generated in systems driven by steam turbines, (and will most likely remain the case in the future) with steam turbines operating in fossil-fuel, cogeneration, combined cycle, integrated gasification combined cycle, geothermal, solar thermal, and nuclear plants across the world, this book provides a comprehensive assessment of the research and work that has been completed over the past decades. - Presents an in-depth review on steam turbine design optimization, analysis, and measurement - Written by a range of experts in the area - Provides an overview of turbine retrofitting and advanced applications in power generation
Aeronautical Engineering
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 932
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 932
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).
Propulsion and Power
Author: Joachim Kurzke
Publisher: Springer
ISBN: 3319759795
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
Publisher: Springer
ISBN: 3319759795
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
Turbomachinery Flow Physics and Dynamic Performance
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
ISBN: 3540223681
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
Over the past three decades turbomachines experienced a steep increase in efficiency and performance. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principals of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.
Publisher: Springer Science & Business Media
ISBN: 3540223681
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
Over the past three decades turbomachines experienced a steep increase in efficiency and performance. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principals of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.
AGARD Index of Publications
Author: Organisation du traité de l'Atlantique Nord. Groupe consultatif pour la recherche et le développement aérospatial. Technical Information Panel
Publisher:
ISBN: 9789283610199
Category : Aeronautics
Languages : en
Pages : 508
Book Description
Publisher:
ISBN: 9789283610199
Category : Aeronautics
Languages : en
Pages : 508
Book Description
Aeronautical Engineering: A Cumulative Index to a Continuing Bibliography (supplement 300)
Principles of Turbomachinery
Author: R. K. Turton
Publisher: Springer Science & Business Media
ISBN: 9401096899
Category : Science
Languages : en
Pages : 213
Book Description
This text outlines the fluid and thermodynamic principles that apply to all classes of turbomachines, and the material has been presented in a unified way. The approach has been used with successive groups of final year mechanical engineering students, who have helped with the development of the ideas outlined. As with these students, the reader is assumed to have a basic understanding of fluid mechanics and thermodynamics. However, the early chapters combine the relevant material with some new concepts, and provide basic reading references. Two related objectives have defined the scope of the treatment. The first is to provide a general treatment of the common forms of turbo machine, covering basic fluid dynamics and thermodynamics of flow through passages and over surfaces, with a brief derivation of the fundamental governing equations. The second objective is to apply this material to the various machines in enough detail to allow the major design and performance factors to be appreciated. Both objectives have been met by grouping the machines by flow path rather than by application, thus allowing an appreciation of points of similarity or difference in approach. No attempt has been made to cover detailed points of design or stressing, though the cited references and the body of information from which they have been taken give this sort of information. The first four chapters introduce the fundamental relations, and the suc ceeding chapters deal with applications to the various flow paths.
Publisher: Springer Science & Business Media
ISBN: 9401096899
Category : Science
Languages : en
Pages : 213
Book Description
This text outlines the fluid and thermodynamic principles that apply to all classes of turbomachines, and the material has been presented in a unified way. The approach has been used with successive groups of final year mechanical engineering students, who have helped with the development of the ideas outlined. As with these students, the reader is assumed to have a basic understanding of fluid mechanics and thermodynamics. However, the early chapters combine the relevant material with some new concepts, and provide basic reading references. Two related objectives have defined the scope of the treatment. The first is to provide a general treatment of the common forms of turbo machine, covering basic fluid dynamics and thermodynamics of flow through passages and over surfaces, with a brief derivation of the fundamental governing equations. The second objective is to apply this material to the various machines in enough detail to allow the major design and performance factors to be appreciated. Both objectives have been met by grouping the machines by flow path rather than by application, thus allowing an appreciation of points of similarity or difference in approach. No attempt has been made to cover detailed points of design or stressing, though the cited references and the body of information from which they have been taken give this sort of information. The first four chapters introduce the fundamental relations, and the suc ceeding chapters deal with applications to the various flow paths.
Hydrogen Technology
Author: Aline Léon
Publisher: Springer Science & Business Media
ISBN: 3540699252
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Aline Leon ́ In the last years, public attention was increasingly shifted by the media and world governmentsto the conceptsof saving energy,reducingpollution,protectingthe - vironment, and developing long-term energy supply solutions. In parallel, research funding relating to alternative fuels and energy carriers is increasing on both - tional and international levels. Why has future energy supply become such a matter of concern? The reasons are the problems created by the world’s current energy supply s- tem which is mainly based on fossil fuels. In fact, the energystored in hydrocarb- based solid, liquid, and gaseous fuels was, is, and will be widely consumed for internal combustion engine-based transportation, for electricity and heat generation in residential and industrial sectors, and for the production of fertilizers in agric- ture, as it is convenient, abundant, and cheap. However, such a widespread use of fossil fuels by a constantly growing world population (from 2. 3 billion in 1939 to 6. 5 billion in 2006) gives rise to the two problems of oil supply and environmental degradation. The problemrelated to oil supply is caused by the fact that fossil fuels are not - newable primary energy sources: This means that since the rst barrel of petroleum has been pumped out from the ground, we have been exhausting a heritage given by nature.
Publisher: Springer Science & Business Media
ISBN: 3540699252
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Aline Leon ́ In the last years, public attention was increasingly shifted by the media and world governmentsto the conceptsof saving energy,reducingpollution,protectingthe - vironment, and developing long-term energy supply solutions. In parallel, research funding relating to alternative fuels and energy carriers is increasing on both - tional and international levels. Why has future energy supply become such a matter of concern? The reasons are the problems created by the world’s current energy supply s- tem which is mainly based on fossil fuels. In fact, the energystored in hydrocarb- based solid, liquid, and gaseous fuels was, is, and will be widely consumed for internal combustion engine-based transportation, for electricity and heat generation in residential and industrial sectors, and for the production of fertilizers in agric- ture, as it is convenient, abundant, and cheap. However, such a widespread use of fossil fuels by a constantly growing world population (from 2. 3 billion in 1939 to 6. 5 billion in 2006) gives rise to the two problems of oil supply and environmental degradation. The problemrelated to oil supply is caused by the fact that fossil fuels are not - newable primary energy sources: This means that since the rst barrel of petroleum has been pumped out from the ground, we have been exhausting a heritage given by nature.
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.