Stochastic Processes, Estimation, and Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Processes, Estimation, and Control PDF full book. Access full book title Stochastic Processes, Estimation, and Control by Jason L. Speyer. Download full books in PDF and EPUB format.

Stochastic Processes, Estimation, and Control

Stochastic Processes, Estimation, and Control PDF Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716551
Category : Mathematics
Languages : en
Pages : 391

Book Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.

Stochastic Processes, Estimation, and Control

Stochastic Processes, Estimation, and Control PDF Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716551
Category : Mathematics
Languages : en
Pages : 391

Book Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.

Estimation of Stochastic Processes with Missing Observations

Estimation of Stochastic Processes with Missing Observations PDF Author: Mikhail Moklyachuk
Publisher:
ISBN: 9781536158908
Category : Missing observations (Statistics)
Languages : en
Pages : 0

Book Description
We propose results of the investigation of the problem of mean square optimal estimation of linear functionals constructed from unobserved values of stationary stochastic processes. Estimates are based on observations of the processes with additive stationary noise process. The aim of the book is to develop methods for finding the optimal estimates of the functionals in the case where some observations are missing. Formulas for computing values of the mean-square errors and the spectral characteristics of the optimal linear estimates of functionals are derived in the case of spectral certainty, where the spectral densities of the processes are exactly known. The minimax robust method of estimation is applied in the case of spectral uncertainty, where the spectral densities of the processes are not known exactly while some classes of admissible spectral densities are given. The formulas that determine the least favourable spectral densities and the minimax spectral characteristics of the optimal estimates of functionals are proposed for some special classes of admissible densities.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Introduction to Stochastic Models

Introduction to Stochastic Models PDF Author: Roe Goodman
Publisher: Courier Corporation
ISBN: 0486450376
Category : Mathematics
Languages : en
Pages : 370

Book Description
Newly revised by the author, this undergraduate-level text introduces the mathematical theory of probability and stochastic processes. Using both computer simulations and mathematical models of random events, it comprises numerous applications to the physical and biological sciences, engineering, and computer science. Subjects include sample spaces, probabilities distributions and expectations of random variables, conditional expectations, Markov chains, and the Poisson process. Additional topics encompass continuous-time stochastic processes, birth and death processes, steady-state probabilities, general queuing systems, and renewal processes. Each section features worked examples, and exercises appear at the end of each chapter, with numerical solutions at the back of the book. Suggestions for further reading in stochastic processes, simulation, and various applications also appear at the end.

Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time PDF Author: J. K. Lindsey
Publisher: Cambridge University Press
ISBN: 9781139454513
Category : Mathematics
Languages : en
Pages : 356

Book Description
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences PDF Author: Maksym Luz
Publisher: John Wiley & Sons
ISBN: 1119663504
Category : Mathematics
Languages : en
Pages : 275

Book Description
Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.

Modelling and Application of Stochastic Processes

Modelling and Application of Stochastic Processes PDF Author: Uday B. Desai
Publisher: Springer Science & Business Media
ISBN: 9780898381771
Category : Science
Languages : en
Pages : 310

Book Description
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott PDF Author: Samuel N Cohen
Publisher: World Scientific
ISBN: 9814483915
Category : Mathematics
Languages : en
Pages : 605

Book Description
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Introduction To Stochastic Processes

Introduction To Stochastic Processes PDF Author: Mu-fa Chen
Publisher: World Scientific
ISBN: 9814740322
Category : Mathematics
Languages : en
Pages : 245

Book Description
The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.

Introduction to Stochastic Processes

Introduction to Stochastic Processes PDF Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 1482286114
Category : Mathematics
Languages : en
Pages : 249

Book Description
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.