Semiconductor Photonics of Nanomaterials and Quantum Structures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semiconductor Photonics of Nanomaterials and Quantum Structures PDF full book. Access full book title Semiconductor Photonics of Nanomaterials and Quantum Structures by Arash Rahimi-Iman. Download full books in PDF and EPUB format.

Semiconductor Photonics of Nanomaterials and Quantum Structures

Semiconductor Photonics of Nanomaterials and Quantum Structures PDF Author: Arash Rahimi-Iman
Publisher: Springer Nature
ISBN: 303069352X
Category : Science
Languages : en
Pages : 288

Book Description
This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.

Semiconductor Photonics of Nanomaterials and Quantum Structures

Semiconductor Photonics of Nanomaterials and Quantum Structures PDF Author: Arash Rahimi-Iman
Publisher: Springer Nature
ISBN: 303069352X
Category : Science
Languages : en
Pages : 288

Book Description
This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.

Photonics of Quantum-dot Nanomaterials and Devices

Photonics of Quantum-dot Nanomaterials and Devices PDF Author: Ortwin Hess
Publisher: World Scientific
ISBN: 1848165226
Category : Science
Languages : en
Pages : 182

Book Description
1. Introduction to photonic quantum dot nanomaterials and devices. 1.1. Physical properties of quantum dots. 1.2. Active semiconductor gain media. 1.3. Quantum dot lasers. 1.4. Laser cavities -- 2. Theory of quantum dot light-matter dynamics. 2.1. Rate equations. 2.2. Maxwell-Bloch equations. 2.3. Quantum luminescence equations. 2.4. Quantum theoretical description -- 3. Light meets matter I: microscopic carrier effect. 3.1. Dynamics in the active charge carrier plasma. 3.2. Dynamic level hole burning. 3.3. Ultrashort nonlinear gain and index dynamics. 3.4. Conclusion -- 4. Light meets matter II: mesoscopic space-time dynamics. 4.1. Introduction: transverse and longitudinal mode dynamics. 4.2. Influence of the transverse degree of freedom and nano-structuring on nearfield dynamics and spectra. 4.3. Longitudinal modes. 4.4. Coupled space-time dynamics. 4.5. Conclusion -- 5. Performance and characterisation: properties on large time and length scales. 5.1. Introduction. 5.2. Spatial and spectral beam quality. 5.3. Dynamic amplitude phase coupling. 5.4. Conclusion -- 6. Nonlinear pulse propagation in semiconductor quantum dot lasers. 6.1. Dynamic shaping of short optical pulses. 6.2. Nonlinear femtosecond dynamics. 6.3. Conclusion -- 7. High-speed dynamics. 7.1. Mode-locking in multi-section quantum dot lasers. 7.2. Dependence of pulse duration on injection current, bias voltage and device geometry. 7.3. Radio frequency spectra of the emitted light. 7.4. Short-pulse optimisation. 7.5. Conclusion -- 8. Quantum dot random lasers. 8.1. Spatially inhomogeneous semiconductor quantum dot ensembles. 8.2. Coherence properties. 8.3. Random lasing in semiconductor quantum dot ensembles. 8.4. Conclusion -- 9. Coherence properties of quantum dot micro-cavity lasers. 9.1. Introduction. 9.2. Radial signal propagation and coherence trapping. 9.3. Influence of disorder. 9.4. Conclusions

Nano-Structures for Optics and Photonics

Nano-Structures for Optics and Photonics PDF Author: Baldassare Di Bartolo
Publisher: Springer
ISBN: 9401791333
Category : Science
Languages : en
Pages : 589

Book Description
The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume. The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique.

Semiconductor Photonics: Nano-Structured Materials and Devices

Semiconductor Photonics: Nano-Structured Materials and Devices PDF Author: Soo Jin Chua
Publisher: Trans Tech Publications Ltd
ISBN: 3038132233
Category : Technology & Engineering
Languages : en
Pages : 264

Book Description
Volume is indexed by Thomson Reuters CPCI-S (WoS). This book consists of a collection of 74 original peer-reviewed papers. They cover a wide range of topics in the interesting field of nano-structure related semiconductor photonics; a field which encompasses quantum dots, quantum wire, nano-wire, nano-rods, nano-crystals, photonic crystals, ZnO-based materials, III-V compound semiconductors, Si photonics and organic optoelectronic devices.

Photonics, Volume 2

Photonics, Volume 2 PDF Author: David L. Andrews
Publisher: John Wiley & Sons
ISBN: 1118225511
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Semiconductor Nanophotonics

Semiconductor Nanophotonics PDF Author: Michael Kneissl
Publisher: Springer Nature
ISBN: 3030356566
Category : Technology & Engineering
Languages : en
Pages : 572

Book Description
This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.

Semiconductor Photonics: Nano-Structured Materials and Devices

Semiconductor Photonics: Nano-Structured Materials and Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 264

Book Description
This book consists of a collection of 74 original peer-reviewed papers. They cover a wide range of topics in the interesting field of nano-structure related semiconductor photonics; a field which encompasses quantum dots, quantum wire, nano-wire, nano-rods, nano-crystals, photonic crystals, ZnO-based materials, III-V compound semiconductors, Si photonics and organic optoelectronic devices. This book will be a useful reference guide to some of the recent progress made in the active and wide-ranging field of semiconductor photonics.

Modeling, Characterization and Production of Nanomaterials

Modeling, Characterization and Production of Nanomaterials PDF Author:
Publisher: Elsevier
ISBN: 1782422358
Category : Technology & Engineering
Languages : en
Pages : 555

Book Description
Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0080560474
Category : Technology & Engineering
Languages : en
Pages : 862

Book Description
The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual

Optical Properties of Semiconductor Nanocrystals

Optical Properties of Semiconductor Nanocrystals PDF Author: S. V. Gaponenko
Publisher: Cambridge University Press
ISBN: 0521582415
Category : Science
Languages : en
Pages : 263

Book Description
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.