Author: Paul Embrechts
Publisher: Princeton University Press
ISBN: 1400825105
Category : Mathematics
Languages : en
Pages : 125
Book Description
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.
Selfsimilar Processes
Author: Paul Embrechts
Publisher: Princeton University Press
ISBN: 1400825105
Category : Mathematics
Languages : en
Pages : 125
Book Description
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.
Publisher: Princeton University Press
ISBN: 1400825105
Category : Mathematics
Languages : en
Pages : 125
Book Description
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.
Self-Similar Processes in Telecommunications
Author: Oleg Sheluhin
Publisher: John Wiley & Sons
ISBN: 9780470062104
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
For the first time the problems of voice services self-similarity are discussed systematically and in detail with specific examples and illustrations. Self-Similar Processes in Telecommunications considers the self-similar (fractal and multifractal) models of telecommunication traffic and efficiency based on the assumption that its traffic has fractal or multifractal properties (is self-similar). The theoretical aspects of the most well-known traffic models demonstrating self-similar properties are discussed in detail and the comparative analysis of the different models’ efficiency for self-similar traffic is presented. This book demonstrates how to use self-similar processes for designing new telecommunications systems and optimizing existing networks so as to achieve maximum efficiency and serviceability. The approach is rooted in theory, describing the algorithms (the logical arithmetical or computational procedures that define how a task is performed) for modeling these self-similar processes. However, the language and ideas are essentially accessible for those who have a general knowledge of the subject area and the advice is highly practical: all models, problems and solutions are illustrated throughout using numerous real-world examples. Adopts a detailed, theoretical, yet broad-based and practical mathematical approach for designing and operating numerous types of telecommunications systems and networks so as to achieve maximum efficiency Places the subject in context, describing the current algorithms that make up the fractal or self-similar processes while pointing to the future development of the technology Offers a comparative analysis of the different types of self-similar process usage within the context of local area networks, wide area networks and in the modeling of video traffic and mobile communications networks Describes how mathematical models are used as a basis for building numerous types of network, including voice, audio, data, video, multimedia services and IP (Internet Protocol) telephony The book will appeal to the wide range of specialists dealing with the design and exploitation of telecommunication systems. It will be useful for the post-graduate students, lecturers and researchers connected with communication networks disciplines.
Publisher: John Wiley & Sons
ISBN: 9780470062104
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
For the first time the problems of voice services self-similarity are discussed systematically and in detail with specific examples and illustrations. Self-Similar Processes in Telecommunications considers the self-similar (fractal and multifractal) models of telecommunication traffic and efficiency based on the assumption that its traffic has fractal or multifractal properties (is self-similar). The theoretical aspects of the most well-known traffic models demonstrating self-similar properties are discussed in detail and the comparative analysis of the different models’ efficiency for self-similar traffic is presented. This book demonstrates how to use self-similar processes for designing new telecommunications systems and optimizing existing networks so as to achieve maximum efficiency and serviceability. The approach is rooted in theory, describing the algorithms (the logical arithmetical or computational procedures that define how a task is performed) for modeling these self-similar processes. However, the language and ideas are essentially accessible for those who have a general knowledge of the subject area and the advice is highly practical: all models, problems and solutions are illustrated throughout using numerous real-world examples. Adopts a detailed, theoretical, yet broad-based and practical mathematical approach for designing and operating numerous types of telecommunications systems and networks so as to achieve maximum efficiency Places the subject in context, describing the current algorithms that make up the fractal or self-similar processes while pointing to the future development of the technology Offers a comparative analysis of the different types of self-similar process usage within the context of local area networks, wide area networks and in the modeling of video traffic and mobile communications networks Describes how mathematical models are used as a basis for building numerous types of network, including voice, audio, data, video, multimedia services and IP (Internet Protocol) telephony The book will appeal to the wide range of specialists dealing with the design and exploitation of telecommunication systems. It will be useful for the post-graduate students, lecturers and researchers connected with communication networks disciplines.
Analysis of Variations for Self-similar Processes
Author: Ciprian Tudor
Publisher: Springer Science & Business Media
ISBN: 3319009362
Category : Mathematics
Languages : en
Pages : 272
Book Description
Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature. Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of self-similar processes and their interrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus.
Publisher: Springer Science & Business Media
ISBN: 3319009362
Category : Mathematics
Languages : en
Pages : 272
Book Description
Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature. Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of self-similar processes and their interrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus.
Long-Range Dependence and Self-Similarity
Author: Vladas Pipiras
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693
Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693
Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.
Trends In Probability And Related Analysis - Proceedings Of Sap'98
Author: N Kono
Publisher: World Scientific
ISBN: 9814543527
Category :
Languages : en
Pages : 322
Book Description
This proceedings volume reflects the current interest in and future direction of probability theory and related theory of analysis and statistics. It contains 2 survey papers and 21 contributed papers.
Publisher: World Scientific
ISBN: 9814543527
Category :
Languages : en
Pages : 322
Book Description
This proceedings volume reflects the current interest in and future direction of probability theory and related theory of analysis and statistics. It contains 2 survey papers and 21 contributed papers.
Lévy Processes and Infinitely Divisible Distributions
Author: Sato Ken-Iti
Publisher: Cambridge University Press
ISBN: 9780521553025
Category : Distribution (Probability theory)
Languages : en
Pages : 504
Book Description
Publisher: Cambridge University Press
ISBN: 9780521553025
Category : Distribution (Probability theory)
Languages : en
Pages : 504
Book Description
Stationary Stochastic Models: An Introduction
Author: Riccardo Gatto
Publisher: World Scientific
ISBN: 9811251851
Category : Mathematics
Languages : en
Pages : 415
Book Description
This volume provides a unified mathematical introduction to stationary time series models and to continuous time stationary stochastic processes. The analysis of these stationary models is carried out in time domain and in frequency domain. It begins with a practical discussion on stationarity, by which practical methods for obtaining stationary data are described. The presented topics are illustrated by numerous examples. Readers will find the following covered in a comprehensive manner:At the end, some selected topics such as stationary random fields, simulation of Gaussian stationary processes, time series for planar directions, large deviations approximations and results of information theory are presented. A detailed appendix containing complementary materials will assist the reader with many technical aspects of the book.
Publisher: World Scientific
ISBN: 9811251851
Category : Mathematics
Languages : en
Pages : 415
Book Description
This volume provides a unified mathematical introduction to stationary time series models and to continuous time stationary stochastic processes. The analysis of these stationary models is carried out in time domain and in frequency domain. It begins with a practical discussion on stationarity, by which practical methods for obtaining stationary data are described. The presented topics are illustrated by numerous examples. Readers will find the following covered in a comprehensive manner:At the end, some selected topics such as stationary random fields, simulation of Gaussian stationary processes, time series for planar directions, large deviations approximations and results of information theory are presented. A detailed appendix containing complementary materials will assist the reader with many technical aspects of the book.
Library of Congress Subject Headings
Author: Library of Congress
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1160
Book Description
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1160
Book Description
Library of Congress Subject Headings
Author: Library of Congress. Cataloging Policy and Support Office
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1924
Book Description
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1924
Book Description
Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition
Author: Alfonso Rocha-Arteaga
Publisher: Springer Nature
ISBN: 3030227006
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.
Publisher: Springer Nature
ISBN: 3030227006
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.