Introduction to Earthquake Engineering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Earthquake Engineering PDF full book. Access full book title Introduction to Earthquake Engineering by Hector Estrada. Download full books in PDF and EPUB format.

Introduction to Earthquake Engineering

Introduction to Earthquake Engineering PDF Author: Hector Estrada
Publisher: CRC Press
ISBN: 1351695274
Category : Technology & Engineering
Languages : en
Pages : 251

Book Description
This book is intended primarily as a textbook for students studying structural engineering. It covers three main areas in the analysis and design of structural systems subjected to seismic loading: basic seismology, basic structural dynamics, and code-based calculations used to determine seismic loads from an equivalent static method and a dynamics-based method. It provides students with the skills to determine seismic effects on structural systems, and is unique in that it combines the fundamentals of structural dynamics with the latest code specifications. Each chapter contains electronic resources: image galleries, PowerPoint presentations, a solutions manual, etc.

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering PDF Author: Steven L. Kramer
Publisher: CRC Press
ISBN: 1040115942
Category : Technology & Engineering
Languages : en
Pages : 1061

Book Description
This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.

Basic Earthquake Engineering

Basic Earthquake Engineering PDF Author: Halûk Sucuoğlu
Publisher: Springer
ISBN: 3319010263
Category : Science
Languages : en
Pages : 297

Book Description
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.

Elements of Earthquake Engineering and Structural Dynamics

Elements of Earthquake Engineering and Structural Dynamics PDF Author: André Filiatrault
Publisher: Presses inter Polytechnique
ISBN: 9782553010217
Category : Technology & Engineering
Languages : en
Pages : 436

Book Description
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications PDF Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1466616415
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

Structural Damping

Structural Damping PDF Author: Zach Liang
Publisher: CRC Press
ISBN: 1439815836
Category : Technology & Engineering
Languages : en
Pages : 577

Book Description
Rapid advances have been made during the past few decades in earthquake response modification technologies for structures, most notably in base isolation and energy dissipation systems. Many practical applications of various dampers can be found worldwide and, in the United States, damper design has been included in building codes. The current desi

Engineering Seismology

Engineering Seismology PDF Author: Özdoğan Yilmaz
Publisher:
ISBN: 9781560803294
Category : Earthquake engineering
Languages : en
Pages : 954

Book Description
The scope of engineering seismology includes geotechnical site investigations for buildings and engineering infrastructures, such as dams, levees, bridges, and tunnels, landslide and active-fault investigations, seismic microzonation, and geophysical investigations of historic buildings. These projects require multidisciplinary participation by the geologist, geophysicist, and geotechnical and earthquake engineers. A key objective of this book (SEG Investigations in Geophysics Series No. 17) by Öz Yilmaz is to encourage the specialists from these disciplines to apply the seismic method to solve the many challenging engineering problems they face. The broader scope of engineering seismology also includes exploration of earth resources, including groundwater exploration, coal and mineral exploration, and geothermal exploration. While focusing on the application of the seismic method to geotechnical site investigations, this book includes many case studies in all of the applications of engineering seismology.

Geotechnical Earthquake Engineering Handbook

Geotechnical Earthquake Engineering Handbook PDF Author: Robert W. Day
Publisher: McGraw Hill Professional
ISBN: 0071377824
Category : Science
Languages : en
Pages : 610

Book Description
Provides in-depth earthquake engineering analysis as applied to soils. Includes worked-out problems illustrating earthquake analyses and current seismic codes.

Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data

Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data PDF Author: Marco Mucciarelli
Publisher: Springer Science & Business Media
ISBN: 1402091966
Category : Science
Languages : en
Pages : 386

Book Description
The current state-of-the-art allows seismologists to give statistical estimates of the probability of a large earthquake striking a given region, identifying the areas in which the seismic hazard is the highest. However, the usefulness of these estimates is limited, without information about local subsoil conditions and the vulnerability of buildings. Identifying the sites where a local ampli?cation of seismic shaking will occur, and identifying the buildings that will be the weakest under the seismic shaking is the only strategy that allows effective defence against earthquake damage at an affordable cost, by applying selective reinforcement only to the structures that need it. Unfortunately, too often the Earth’s surface acted as a divide between seism- ogists and engineers. Now it is becoming clear that the building behaviour largely depends on the seismic input and the buildings on their turn act as seismic sources, in an intricate interplay that non-linear phenomena make even more complex. These phenomena are often the cause of observed damage enhancement during past ear- quakes. While research may pursue complex models to fully understand soil dyn- ics under seismic loading, we need, at the same time, simple models valid on average, whose results can be easily transferred to end users without prohibitive expenditure. Very complex models require a large amount of data that can only be obtained at a very high cost or may be impossible to get at all.

Fundamentals of Seismic Analysis and Design of Buildings

Fundamentals of Seismic Analysis and Design of Buildings PDF Author: Ahmed M. M. Ibrahim
Publisher:
ISBN: 9780985697266
Category :
Languages : en
Pages :

Book Description
a comprehensive introduction to the seismic principles essential for the design of building structures. The book offers a concise but thorough review of seismic theory, code application, design principles, and structural analysis. The book is an ideal review for candidates studying for the California Civil P.E Seismic Principles Exam and the seismic portion of the National Civil P.E 8hrs exam. Updated for 2015 IBC and ASCE 7-10.

Seismic Hazard and Risk Analysis

Seismic Hazard and Risk Analysis PDF Author: Robin K. McGuire
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 248

Book Description
This is the twenty-sixth volume in the Earthquake Engineering Research Institute's series, Connections: The EERI Oral History Series. EERI began this series to preserve the recollections of some of those who have had pioneering careers in the field of earthquake engineering.Mete Sozen (1932-2018) is the Karl H. Kettelhut Distinguished Professor Emeritus of Civil Engineering at Purdue University, Indiana, United States.Besides his academic interest in the development of design codes for concrete structures, Sozen is notable for his contributions to the official post 9/11-government studies of terrorist attacks, including the Oklahoma City bombing, and The Pentagon. Sozen also led a team that created an engineering simulation of American Airlines Flight 11 crashing into the North Tower of the World Trade Center. The computer-animated visualizations were made entirely from the simulation data. He was elected to the National Academy of Engineering in 1977 for contributions to understanding the structural design and behavior of buildings and bridges subjected to earthquake motions.Sozen received his undergraduate education at Robert College (Turkey, 1951) and his master's (1952) and doctoral degrees (1957) from the University of Illinois at Urbana-Champaign.