Privacy and Security Policies in Big Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Privacy and Security Policies in Big Data PDF full book. Access full book title Privacy and Security Policies in Big Data by Tamane, Sharvari. Download full books in PDF and EPUB format.

Privacy and Security Policies in Big Data

Privacy and Security Policies in Big Data PDF Author: Tamane, Sharvari
Publisher: IGI Global
ISBN: 1522524878
Category : Computers
Languages : en
Pages : 325

Book Description
In recent years, technological advances have led to significant developments within a variety of business applications. In particular, data-driven research provides ample opportunity for enterprise growth, if utilized efficiently. Privacy and Security Policies in Big Data is a pivotal reference source for the latest research on innovative concepts on the management of security and privacy analytics within big data. Featuring extensive coverage on relevant areas such as kinetic knowledge, cognitive analytics, and parallel computing, this publication is an ideal resource for professionals, researchers, academicians, advanced-level students, and technology developers in the field of big data.

Security, Privacy, and Forensics Issues in Big Data

Security, Privacy, and Forensics Issues in Big Data PDF Author: Joshi, Ramesh C.
Publisher: IGI Global
ISBN: 1522597441
Category : Computers
Languages : en
Pages : 474

Book Description
With the proliferation of devices connected to the internet and connected to each other, the volume of data collected, stored, and processed is increasing every day, which brings new challenges in terms of information security. As big data expands with the help of public clouds, traditional security solutions tailored to private computing infrastructures and confined to a well-defined security perimeter, such as firewalls and demilitarized zones (DMZs), are no longer effective. New security functions are required to work over the heterogenous composition of diverse hardware, operating systems, and network domains. Security, Privacy, and Forensics Issues in Big Data is an essential research book that examines recent advancements in big data and the impact that these advancements have on information security and privacy measures needed for these networks. Highlighting a range of topics including cryptography, data analytics, and threat detection, this is an excellent reference source for students, software developers and engineers, security analysts, IT consultants, academicians, researchers, and professionals.

Security, Privacy and Data Analytics

Security, Privacy and Data Analytics PDF Author: Udai Pratap Rao
Publisher: Springer Nature
ISBN: 9819935695
Category : Computers
Languages : en
Pages : 424

Book Description
This book constitutes refereed proceedings of the International Conference on Security, Privacy and Data Analytics, ISPDA 2022. The volume covers topics, including big data and analytics, cloud security and privacy, data intelligence, hardware security, network security, blockchain technology and distributed ledger, machine learning for security, and many others. The volume includes novel contributions and the latest developments from researchers across industry and academia working in security, privacy, and data analytics from technological and social perspectives. This book will emerge as a valuable reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners across the globe.

Research Anthology on Privatizing and Securing Data

Research Anthology on Privatizing and Securing Data PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799889556
Category : Computers
Languages : en
Pages : 2188

Book Description
With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.

The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy

The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy PDF Author: John Macintyre
Publisher: Springer Nature
ISBN: 3030895114
Category : Computers
Languages : en
Pages : 999

Book Description
This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.

Smart Log Data Analytics

Smart Log Data Analytics PDF Author: Florian Skopik
Publisher: Springer Nature
ISBN: 3030744507
Category : Computers
Languages : en
Pages : 210

Book Description
This book provides insights into smart ways of computer log data analysis, with the goal of spotting adversarial actions. It is organized into 3 major parts with a total of 8 chapters that include a detailed view on existing solutions, as well as novel techniques that go far beyond state of the art. The first part of this book motivates the entire topic and highlights major challenges, trends and design criteria for log data analysis approaches, and further surveys and compares the state of the art. The second part of this book introduces concepts that apply character-based, rather than token-based, approaches and thus work on a more fine-grained level. Furthermore, these solutions were designed for “online use”, not only forensic analysis, but also process new log lines as they arrive in an efficient single pass manner. An advanced method for time series analysis aims at detecting changes in the overall behavior profile of an observed system and spotting trends and periodicities through log analysis. The third part of this book introduces the design of the AMiner, which is an advanced open source component for log data anomaly mining. The AMiner comes with several detectors to spot new events, new parameters, new correlations, new values and unknown value combinations and can run as stand-alone solution or as sensor with connection to a SIEM solution. More advanced detectors help to determines the characteristics of variable parts of log lines, specifically the properties of numerical and categorical fields. Detailed examples throughout this book allow the reader to better understand and apply the introduced techniques with open source software. Step-by-step instructions help to get familiar with the concepts and to better comprehend their inner mechanisms. A log test data set is available as free download and enables the reader to get the system up and running in no time. This book is designed for researchers working in the field of cyber security, and specifically system monitoring, anomaly detection and intrusion detection. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems. Forward-thinking practitioners, who would benefit from becoming familiar with the advanced anomaly detection methods, will also be interested in this book.

Handbook of Big Data Privacy

Handbook of Big Data Privacy PDF Author: Kim-Kwang Raymond Choo
Publisher: Springer Nature
ISBN: 3030385574
Category : Computers
Languages : en
Pages : 397

Book Description
This handbook provides comprehensive knowledge and includes an overview of the current state-of-the-art of Big Data Privacy, with chapters written by international world leaders from academia and industry working in this field. The first part of this book offers a review of security challenges in critical infrastructure and offers methods that utilize acritical intelligence (AI) techniques to overcome those issues. It then focuses on big data security and privacy issues in relation to developments in the Industry 4.0. Internet of Things (IoT) devices are becoming a major source of security and privacy concern in big data platforms. Multiple solutions that leverage machine learning for addressing security and privacy issues in IoT environments are also discussed this handbook. The second part of this handbook is focused on privacy and security issues in different layers of big data systems. It discusses about methods for evaluating security and privacy of big data systems on network, application and physical layers. This handbook elaborates on existing methods to use data analytic and AI techniques at different layers of big data platforms to identify privacy and security attacks. The final part of this handbook is focused on analyzing cyber threats applicable to the big data environments. It offers an in-depth review of attacks applicable to big data platforms in smart grids, smart farming, FinTech, and health sectors. Multiple solutions are presented to detect, prevent and analyze cyber-attacks and assess the impact of malicious payloads to those environments. This handbook provides information for security and privacy experts in most areas of big data including; FinTech, Industry 4.0, Internet of Things, Smart Grids, Smart Farming and more. Experts working in big data, privacy, security, forensics, malware analysis, machine learning and data analysts will find this handbook useful as a reference. Researchers and advanced-level computer science students focused on computer systems, Internet of Things, Smart Grid, Smart Farming, Industry 4.0 and network analysts will also find this handbook useful as a reference.

Big Data Analytics in Cybersecurity

Big Data Analytics in Cybersecurity PDF Author: Onur Savas
Publisher: CRC Press
ISBN: 1351650416
Category : Business & Economics
Languages : en
Pages : 452

Book Description
Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.

Privacy and Security Issues in Big Data

Privacy and Security Issues in Big Data PDF Author: Pradip Kumar Das
Publisher: Springer Nature
ISBN: 981161007X
Category : Computers
Languages : en
Pages : 219

Book Description
This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of “Business Intelligence”. The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.

Security Analytics

Security Analytics PDF Author: Mehak Khurana
Publisher: Chapman & Hall/CRC
ISBN: 9781003206088
Category : Computers
Languages : en
Pages : 224

Book Description
The book gives a comprehensive overview of security issues in cyber physical systems by examining and analyzing the vulnerabilities. It also brings current understanding of common web vulnerabilities and its analysis while maintaining awareness and knowledge of contemporary standards, practices, procedures and methods of Open Web Application Security Project. This book is a medium to funnel creative energy and develop new skills of hacking and analysis of security and expedites the learning of the basics of investigating crimes, including intrusion from the outside and damaging practices from the inside, how criminals apply across devices, networks, and the internet at large and analysis of security data. Features Helps to develop an understanding of how to acquire, prepare, visualize security data. Unfolds the unventured sides of the cyber security analytics and helps spread awareness of the new technological boons. Focuses on the analysis of latest development, challenges, ways for detection and mitigation of attacks, advanced technologies, and methodologies in this area. Designs analytical models to help detect malicious behaviour. The book provides a complete view of data analytics to the readers which include cyber security issues, analysis, threats, vulnerabilities, novel ideas, analysis of latest techniques and technology, mitigation of threats and attacks along with demonstration of practical applications, and is suitable for a wide-ranging audience from graduates to professionals/practitioners and researchers.

Secure Data Science

Secure Data Science PDF Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1000557510
Category : Computers
Languages : en
Pages : 430

Book Description
Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.