Secondary Organic Aerosol Composition Studies Using Mass Spectrometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Secondary Organic Aerosol Composition Studies Using Mass Spectrometry PDF full book. Access full book title Secondary Organic Aerosol Composition Studies Using Mass Spectrometry by Katherine Ann Schilling. Download full books in PDF and EPUB format.

Secondary Organic Aerosol Composition Studies Using Mass Spectrometry

Secondary Organic Aerosol Composition Studies Using Mass Spectrometry PDF Author: Katherine Ann Schilling
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.

Secondary Organic Aerosol Composition Studies Using Mass Spectrometry

Secondary Organic Aerosol Composition Studies Using Mass Spectrometry PDF Author: Katherine Ann Schilling
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.

Characterization of Biogenic Secondary Organic Aerosol Using Mass Spectrometry

Characterization of Biogenic Secondary Organic Aerosol Using Mass Spectrometry PDF Author: Katherine J. Heaton
Publisher:
ISBN: 9781124086231
Category : Atmospheric aerosols
Languages : en
Pages :

Book Description
Secondary Organic Aerosol (SOA) forms in the atmosphere from the oxidation of biogenic emissions. Even though SOA has been linked to health and climate effects, the chemical mechanism of SOA formation is not well understood. Through the use of mass spectrometry, this work characterizes SOA during the early stages of growth from the reaction of ozone with monoterpenes, a major biogenic emission. In this thesis, three types of studies are described for analyzing SOA formation: (1) the molecular composition of SOA is studied using the photoionization aerosol mass spectrometer, (2) the atomic composition is studied with the nanometer aerosol mass spectrometer and (3) high resolution mass spectrometry is used to help reconcile atomic and molecular composition data. The monoterpene ozonolysis reactions were performed in a flow tube reactor, where the reaction period could vary from 3s to 22s. The Photoionization Aerosol Mass Spectrometer (PIAMS) detected the formation of oligomers within seconds of the onset of the reaction. Ions that were detected were mapped to dimers that could form via the stabilized Criegee intermediate channel or the hydroperoxy channel. The Nanometer Aerosol Mass Spectrometer (NAMS) analyzed the elemental composition of the SOA which showed the formation of highly polar compounds during the early stages of SOA growth. NAMS also analyzed the changes in the composition of SOA when it formed in the presence of atmospheric species (water vapor, nitric acid vapor and sodium chloride seed particles). The data collected indicated that there is not as much change for endocyclic compounds as there is for exocyclic compounds. Finally, a new off-line analysis technique was created to micro-extract SOA deposited on a plate from the flow tube reactor. The samples were analyzed with the Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS). The FTICR-MS was used to collect molecular and elemental data simultaneously. The FTICR-MS produced accurate mass data that could be used to calculate molecular formulas. This provided a direct comparison of the data acquired with PIAMS and NAMS.

Investigating the Molecular Composition of Rainwater and Secondary Organic Aerosol Using Ultra-high Resolution Mass Spectrometry

Investigating the Molecular Composition of Rainwater and Secondary Organic Aerosol Using Ultra-high Resolution Mass Spectrometry PDF Author: Anna Victoria Fee
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


A Molecular Characterization of Biogenic Secondary Organic Aerosol by High-resolution Time-of-flight Mass Spectrometry

A Molecular Characterization of Biogenic Secondary Organic Aerosol by High-resolution Time-of-flight Mass Spectrometry PDF Author: Felipe Daniel Lopez-Hilfiker
Publisher:
ISBN:
Category :
Languages : en
Pages : 178

Book Description
The guiding question to this research is: To what extent and by what mechanisms do biogenic volatile organic compounds contribute to atmospheric aerosol mass? To address this question we need to understand the chemistry that produces condensable vapors which when in the presence of particles may partition onto the aerosol surface depending on their chemical and physical properties. I developed an insitu gas and aerosol sampling system, the FIGAERO (Filter Inlet for Gases and AEROsol) to speciate gas and particle phase organics derived from photochemical reactions with biogenic volatile organic compounds under both field and laboratory conditions. By coupling the FIGAERO to a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-TOF-CIMS) I am able to elucidate chemical pathways by identifying elemental compositions and in some cases functional groups present in the detected molecular ions. The coupling of the FIGAERO to the HR-TOF-CIMS also allows the estimation of effective vapor pressures of the aerosol components and this information can be used to improve vapor pressure models and test associated partitioning theories and parameterizations. The approach also provides hundreds of speciated chemical tracers that can be correlated with traditional environmental and chemical measurements (e.g AMS, NOx, SO2, SMPS, VOC) to help derive sources and sinks and to constrain the mechanisms responsible for the formation and growth of organic aerosol. Measurements obtained across a wide range of conditions and locations allowing connections and contrasts between different chemical systems, providing insights into generally controlling factors of secondary organic aerosol (SOA) and its properties.

Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry

Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry PDF Author: Rachel Elizabeth Sellon
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Book Description
Atmospheric aerosols can affect visibility and the Earth's climate by scattering and absorbing light and they also can have adverse effects on human health. The organic portion of atmospheric aerosols is very complex and is a major fraction of fine particulate matter. High molecular weight (high-MW)/oligomeric organic compounds can make up a large part of this organic fraction and the composition, sources, and formation mechanisms for these compounds are not well understood. This knowledge and understanding is necessary to decrease the uncertainty in the climate affects of aerosols and to improve climate models. This dissertation investigates the composition and formation mechanisms for the high-MW/oligomeric fraction of secondary organic aerosols (SOA) collected in Bakersfield, CA and presents a comparative analysis of chamber and ambient SOA, from both Los Angeles (LA) and Bakersfield, to investigate sources at both locations. A novel sampling technique, nanospray-Desorption Electrospray Ionization (nano-DESI), was used with high resolution mass spectrometry (HR-MS) to determine the molecular formulas of the high molecular weight (HMW)/oligomeric fraction of SOA. Nano-DESI involves direct desorption from the sample surface and was used to limit reactions that can take place with extraction and storage in solvent. The samples were collected in Bakersfield and LA during CalNex 2010. Both Bakersfield and LA are out of compliance with EPA standards of ozone and particulate matter and provide opportunities to examine air masses affected by both anthropogenic and biogenic sources. This dissertation has provided the first evidence of observable changes in the composition of high-MW/oligomeric compounds throughout the day. Using positive mode nano-DESI, afternoon increases in the number of compounds that contain carbon, hydrogen and oxygen (CHO) were observed consistent with photochemistry/ozonolysis as a major source for these compounds. Compounds containing reduced nitrogen groups were dominant at night and had precursors consistent with imine formation products from the reaction of carbonyls and ammonia. In the negative mode, organonitrates (CHON) and nitroxy organosulfates (CHONS) had larger numbers of compounds in the night/morning samples consistent with nitrate radical formation reactions. A subset of the CHONS compounds and compounds containing sulfur (CHOS) had the same composition as known biogenic organosulfates and nitroxy organosulfates indicating contributions from both biogenic and anthropogenic sources to the SOA. This dissertation also provides the first analysis of the high-MW/oligomeric fraction in size resolved samples; the majority of the compounds were found in aerosol diameters between 0.18-1.0 micrometers and the CHON were bimodal with size. Finally, this dissertation presents the first comparative analysis of the overlap in the composition of this fraction of SOA between ambient and chamber samples. Samples collected in Pasadena, LA and Bakersfield were compared with samples collected in a smog chamber using diesel and isoprene sources. The results indicate that diesel had the highest overlap at both sites, Bakersfield samples were more oxidized, and LA showed evidence of a SOA plume arriving from downtown LA. The addition of ammonia to the diesel chamber experiment was necessary to form many of the 2N compounds found in Bakersfield. These results increase our understanding of the types of compounds found in urban environments and give evidence for the timescales of formation reactions in an ambient environment. They show that the majority of the high-MW oligomeric compounds are found in submicron size particles and that the composition of this fraction of SOA varies with aerosol size. Results from the chamber comparisons show that both diesel and isoprene are important sources for these compounds and also that there other sources are present. Future work that combines this type of analysis, in other ambient environments, with studies of the optical properties of aerosols could be used to help improve climate models and to start to close the gap in our understanding of the climate effects of atmospheric aerosols.

Molecular Characterization of Organic Aerosol by Mass Spectrometry

Molecular Characterization of Organic Aerosol by Mass Spectrometry PDF Author: Yuqian Gao
Publisher:
ISBN: 9781124611839
Category : Atmospheric aerosols
Languages : en
Pages :

Book Description
Organic aerosol is a major constituent of atmospheric fine particles, especially over continental regions. These particles adversely affect human health and global climate. A significant fraction of organic aerosol is considered to be from the oxidation products of ozone and volatile organic compounds, which are called secondary organic aerosol (SOA). To study the formation mechanisms of secondary organic aerosol, it is important to characterize their molecular composition. The composition of secondary organic aerosol is very complex including thousands of species with molecular weight up to over a thousand Dalton. Methods utilized for the identification of these oxidation products involve advanced mass spectrometry techniques. In this dissertation, three mass spectrometry techniques were developed to study the molecular composition of organic aerosol. Firstly, online nano-aerosol sample deposition methods for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was developed to incorporate matrix particles directly with analyte particles onto a conventional MALDI plate. Secondly, a microsampling and analysis technique was developed in order to collect microgram samples and analyze them with high performance mass spectrometry. With this technique, the molecular composition of particle phase SOA at a low mass loading can be elucidated, which provides information about SOA formation at the early stages. A species with the (neutral molecule) formula C 17 H 26 O 8 (MW 358) increased substantially in intensity relative to other products as the mass loading decreased. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of C 9 H 14 O 4 and C 8 H 12 O 4, most likely pinic acid and terpenylic acid, respectively. This species is likely to be critical at the early stages of SOA formation. Thirdly, ambient secondary electrospray ionization (ESI) source was designed to characterize the molecular composition of both gas and particle phases SOA online. This ion source was demonstrated to be applicable to a wide range of mass spectrometers having an ambient inlet. This technique provides a tool to acquire detailed information about possible SOA nucleation agents. A species with the (neutral molecule) formula C 20 H 36 O 6 (MW 372) was found in the gas-phase products of SOA, which could be critical for the new particle formation of SOA. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of an organic hydroperoxide C 10 H 18 O 3, which is likely formed via OH-initiated oxidation pathway.

Chemical Composition and Photochemical Evolution of Limonene Secondary Organic Aerosol Studied Using High Resolution Electrospray Ionization Mass Spectrometry

Chemical Composition and Photochemical Evolution of Limonene Secondary Organic Aerosol Studied Using High Resolution Electrospray Ionization Mass Spectrometry PDF Author: Adam Patrick Bateman
Publisher:
ISBN: 9781124668659
Category :
Languages : en
Pages : 189

Book Description
Organic aerosols comprise hundreds, if not thousands, of distinct chemical compounds. Traditional analytical techniques for analysis of chemical composition lack the ability to completely characterize complex mixtures such as organic aerosol. Until recently, the best available methods could only provide information on selected aerosol compounds, on selected groups of compounds, or on sample-averaged elemental ratios. Such experimental limitations posed significant barriers to understanding the detailed chemical composition of organic aerosols and its atmospheric evolution. The unique HR ESI-MS methods developed in this research are able to not only characterize the organic aerosols average elemental ratios, but also simultaneously obtain information about hundreds or even thousands of individual compounds in organic aerosols. One of the key achievements of this work was the development of new methods for classification of individual compounds in organic aerosols by their functional groups using reactive HR ESI-MS. This contribution made it possible to track organic aerosols throughout their atmospheric evolution via functional group composition and average elemental ratios while still retaining the chemical composition of each individual compound. Other important scientific advances described in this thesis include: complete characterization of the chemical composition of limonene SOA as a function of particle size and reaction time; adaptation of PILS (particle-into-liquid sampler) to the HR ESI-MS platform; chemical characterization of the water soluble component of several types of organic aerosols; the effects of photochemical aging on the water soluble component of limonene SOA through characterization of the optical properties coupled with chemical composition; and investigation of photochemistry of carbonyls in model SOA matrices. The research included in this dissertation reviews the development of unique aerosol characterization tools utilizing the facilities at UCI and the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The research project answered important questions regarding organic aerosol formation, evolution, and chemical composition that impact the direct and indirect influences of aerosols on Earth's climate.

Interpretation of Mass Spectra

Interpretation of Mass Spectra PDF Author: Fred Warren McLafferty (Chemiker, USA)
Publisher:
ISBN: 9780805370485
Category : Mass spectrometry
Languages : en
Pages : 278

Book Description


Laboratory Studies on the Formation of Secondary Organic Aerosol from the Atmospheric Oxidation of Alkenes

Laboratory Studies on the Formation of Secondary Organic Aerosol from the Atmospheric Oxidation of Alkenes PDF Author: Kenneth Stephen Docherty
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 626

Book Description


Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy

Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy PDF Author: Yingdi Liu
Publisher:
ISBN: 9781124940335
Category : Air
Languages : en
Pages : 76

Book Description
This thesis is only a part of my research work. For more information about my other work, including cavity ring down spectroscopy studies for peroxy radical, aerosol optical extinction, transparent thin and time of flight mass spectrometry studies for the initial steps of ozone and alkenes reaactions, please refer to my PhD thesis in Chemistry department, UC-Riverside.