Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation PDF full book. Access full book title Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation by Nicholas J. Garber. Download full books in PDF and EPUB format.

Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation

Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation PDF Author: Nicholas J. Garber
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 68

Book Description
In recent years, significant effort and money have been invested through research and implemented safety projects to enhance highway safety in Virginia. However, there is still substantial room for improvement in both crash frequency and severity. As there are limits in the available funds for safety improvements, it is crucial that allocated resources for safety improvement be spent at highway locations that will result in the maximum safety benefits. In addition, intersection crashes play a significant role in the safety conditions in Virginia. For example, crashes at intersections in Virginia for the period 2003 through 2007 account for 43.8% of all crashes and 26% of fatal crashes. Therefore, identifying intersections for safety improvements that will give the highest potential for crash reduction when appropriate safety countermeasures are implemented will have a significant impact on the overall safety performance of roads in Virginia. The Federal Highway Administration (FHWA) has developed a procedure for identifying highway locations that have the highest potential for crash reduction (ITT Corporation, 2008). A critical component of this method is the use of safety performance functions (SPFs) to determine the potential for crash reductions at a location. An SPF is a mathematical relationship (model) between frequency of crashes by severity and the most significant causal factors on a specific highway. Although the SafetyAnalyst User's Manual presents several SPFs for intersections, these were developed using data from Minnesota. FHWA also suggested that if feasible, each state should develop its own SPFs based on crash and traffic volume data from the state, as the SPFs that are based on Minnesota data may not adequately represent the crash characteristics in all states. SPFs for intersections in Virginia were developed using the annual average daily traffic as the most significant causal factor, emulating the SPFs currently suggested by SafetyAnalyst. The SPFs were developed for both total crashes and combined fatal plus injury crashes through generalized linear modeling using a negative binomial distribution. Models were also developed for urban and rural intersections separately, and in order to account for the different topographies in Virginia, SPFs were also developed for three regions: Northern, Western, and Eastern. This report covers Phases I and II of the study, which includes urban and rural intersections maintained by VDOT. Statistical comparisons of the models based on Minnesota data with those based on the Virginia data showed that the specific models developed for Virginia fit the Virginia crash data better. The report recommends that VDOT's Traffic Engineering Division use the SPFs developed for Virginia and the specific regional SPFs suggested in this report to prioritize the locations in need of safety improvement.

Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation

Safety Performance Functions for Intersections on Highways Maintained by the Virginia Department of Transportation PDF Author: Nicholas J. Garber
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 68

Book Description
In recent years, significant effort and money have been invested through research and implemented safety projects to enhance highway safety in Virginia. However, there is still substantial room for improvement in both crash frequency and severity. As there are limits in the available funds for safety improvements, it is crucial that allocated resources for safety improvement be spent at highway locations that will result in the maximum safety benefits. In addition, intersection crashes play a significant role in the safety conditions in Virginia. For example, crashes at intersections in Virginia for the period 2003 through 2007 account for 43.8% of all crashes and 26% of fatal crashes. Therefore, identifying intersections for safety improvements that will give the highest potential for crash reduction when appropriate safety countermeasures are implemented will have a significant impact on the overall safety performance of roads in Virginia. The Federal Highway Administration (FHWA) has developed a procedure for identifying highway locations that have the highest potential for crash reduction (ITT Corporation, 2008). A critical component of this method is the use of safety performance functions (SPFs) to determine the potential for crash reductions at a location. An SPF is a mathematical relationship (model) between frequency of crashes by severity and the most significant causal factors on a specific highway. Although the SafetyAnalyst User's Manual presents several SPFs for intersections, these were developed using data from Minnesota. FHWA also suggested that if feasible, each state should develop its own SPFs based on crash and traffic volume data from the state, as the SPFs that are based on Minnesota data may not adequately represent the crash characteristics in all states. SPFs for intersections in Virginia were developed using the annual average daily traffic as the most significant causal factor, emulating the SPFs currently suggested by SafetyAnalyst. The SPFs were developed for both total crashes and combined fatal plus injury crashes through generalized linear modeling using a negative binomial distribution. Models were also developed for urban and rural intersections separately, and in order to account for the different topographies in Virginia, SPFs were also developed for three regions: Northern, Western, and Eastern. This report covers Phases I and II of the study, which includes urban and rural intersections maintained by VDOT. Statistical comparisons of the models based on Minnesota data with those based on the Virginia data showed that the specific models developed for Virginia fit the Virginia crash data better. The report recommends that VDOT's Traffic Engineering Division use the SPFs developed for Virginia and the specific regional SPFs suggested in this report to prioritize the locations in need of safety improvement.

Development of Safety Performance Functions for Two-lane Roads Maintained by the Virginia Department of Transportation

Development of Safety Performance Functions for Two-lane Roads Maintained by the Virginia Department of Transportation PDF Author: Nicholas J. Garber
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 70

Book Description
In recent years, significant effort and money have been invested to enhance highway safety. As available funds decrease, the allocation of resources for safety improvement projects must yield the maximum possible return on investment. Identifying highway locations that have the highest potential for crash reduction with the implementation of effective safety countermeasures is therefore an important first step in achieving the maximum return on safety investment. This study was undertaken to develop safety performance functions (SPFs) for use in Virginia in conjunction with SafetyAnalyst, a computerized analytical tool that can be used for prioritizing safety projects. A safety performance function is a mathematical relationship (model) between frequency of crashes by severity and the most significant causal factors of crashes for a specific type of road. Although the SafetyAnalyst User's Manual recommends four SPFs for two-lane segments, these SPFs were developed using data from Ohio. Because the transferability of these SPFs to other states could not be guaranteed by the developers of the four recommended SPFs, it is necessary to calibrate or develop valid SPFs for each state using appropriate data from the state. In this study, annual average daily traffic (AADT) was used as the most significant causal factor for crashes, emulating the SPFs currently suggested by Safety Analyst. SPFs for two-lane roads in Virginia were developed for total crashes and combined fatal plus injury crashes through generalized linear modeling using a negative binomial distribution for the crashes. Models were developed for urban and rural areas separately, and in order to account for the different topographies in Virginia, SPFs were also separately developed for three regions in Virginia. A total of 139,635 sites were identified for use in this study. Each site is a segment of a rural or urban two-lane road without an intersection for which AADT data were available for the years 2003 through 2007 inclusive and no change in facility type had occurred over that period. A comparative analysis based on the Freeman-Tukey R2 coefficient was then conducted between the relevant Ohio SPFs suggested for use in the SafetyAnalyst User's Manual and those specifically developed in this study for Virginia to determine which set of models better fit the Virginia data. In general, the results indicated that the SPFs specifically developed for Virginia fit the Virginia data better. The final step in this methodology was to illustrate the value of SPFs developed through an analysis of sample sites and the need of the sites for safety improvement based on SPFs as compared to crash rates. The results indicated that prioritization using the empirical Bayes method that incorporates the SPFs resulted in a higher potential for reduction in crashes than did prioritization using crash rates. The effective use of SafetyAnalyst will facilitate the identification of sites with a high potential for safety improvement, which, in turn, with the implementation of appropriate safety improvements, will result in a considerable reduction in crashes and their severity.

Longitudinal Data Analysis

Longitudinal Data Analysis PDF Author: Donald Hedeker
Publisher: John Wiley & Sons
ISBN: 0470036478
Category : Mathematics
Languages : en
Pages : 360

Book Description
Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

Roundabouts

Roundabouts PDF Author: Lee August Rodegerdts
Publisher: Transportation Research Board
ISBN: 0309155118
Category : Technology & Engineering
Languages : en
Pages : 407

Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide - Second Edition explores the planning, design, construction, maintenance, and operation of roundabouts. The report also addresses issues that may be useful in helping to explain the trade-offs associated with roundabouts. This report updates the U.S. Federal Highway Administration's Roundabouts: An Informational Guide, based on experience gained in the United States since that guide was published in 2000.

Gravel Roads

Gravel Roads PDF Author: Ken Skorseth
Publisher:
ISBN:
Category : Gravel roads
Languages : en
Pages : 112

Book Description
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.

Median Cross-section Design for Rural Divided Highways

Median Cross-section Design for Rural Divided Highways PDF Author: Jerry L. Graham (Verkehrsingenieur.)
Publisher:
ISBN: 9780309308199
Category : Express highways
Languages : en
Pages : 110

Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 794: Median Cross-Section Design for Rural Divided Highways provides guidelines for designing typical cross-sections for medians on new and existing rural freeways and divided highways."--Publisher's description.

Guide for Pavement Friction

Guide for Pavement Friction PDF Author:
Publisher: AASHTO
ISBN: 1560514280
Category : Pavements
Languages : en
Pages : 87

Book Description
This report contains guidelines and recommendations for managing and designing for friction on highway pavements. The contents of this report will be of interest to highway materials, construction, pavement management, safety, design, and research engineers, as well as others concerned with the friction and related surface characteristics of highway pavements.

Roadway Lighting Design Guide

Roadway Lighting Design Guide PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 156051325X
Category : Technology & Engineering
Languages : en
Pages : 134

Book Description
This guide replaces the 1984 publication entitled An Informational Guide for Roadway Lighting. It has been revised and brought up to date to reflect current practices in roadway lighting. The guide provides a general overview of lighting systems from the point of view of the transportation departments and recommends minimum levels of quality. The guide incorporates the illuminance and luminance design methods, but does not include the small target visibility (STV) method.

Guide for the Planning, Design, and Operation of Pedestrian Facilities

Guide for the Planning, Design, and Operation of Pedestrian Facilities PDF Author:
Publisher: AASHTO
ISBN: 1560512717
Category : CD-ROMS.
Languages : en
Pages : 142

Book Description


Statistical Methods in Highway Safety Analysis

Statistical Methods in Highway Safety Analysis PDF Author: Bhagwant Naraine Persaud
Publisher:
ISBN:
Category : Transportation
Languages : en
Pages : 88

Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 295: Statistical Methods in Highway Safety Analysis focus on the type of safety analysis required to support traditional engineering functions, such as the identification of hazardous locations and the development and evaluation of countermeasures. Analyses related specifically to driver and vehicle safety are not covered, but some statistical methods used in these areas are of relevance and are summarized where appropriate.