Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141
Book Description
Role of Explainable Artificial Intelligence in E-Commerce
Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141
Book Description
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141
Book Description
Explanatory Model Analysis
Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Principles and Methods of Explainable Artificial Intelligence in Healthcare
Author: Victor Hugo C. De Albuquerque
Publisher: Medical Information Science Reference
ISBN: 9781668437919
Category :
Languages : en
Pages : 325
Book Description
"This book focuses on the Explainable Artificial Intelligence (XAI) for healthcare, providing a broad overview of state-of-art approaches for accurate analysis and diagnosis, and encompassing computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, medical imaging data that assist in earlier prediction"--
Publisher: Medical Information Science Reference
ISBN: 9781668437919
Category :
Languages : en
Pages : 325
Book Description
"This book focuses on the Explainable Artificial Intelligence (XAI) for healthcare, providing a broad overview of state-of-art approaches for accurate analysis and diagnosis, and encompassing computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, medical imaging data that assist in earlier prediction"--
Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges
Author: I. Tiddi
Publisher: IOS Press
ISBN: 1643680811
Category : Computers
Languages : en
Pages : 314
Book Description
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Publisher: IOS Press
ISBN: 1643680811
Category : Computers
Languages : en
Pages : 314
Book Description
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
The AI Advantage
Author: Thomas H. Davenport
Publisher: MIT Press
ISBN: 0262538008
Category : Business & Economics
Languages : en
Pages : 243
Book Description
Cutting through the hype, a practical guide to using artificial intelligence for business benefits and competitive advantage. In The AI Advantage, Thomas Davenport offers a guide to using artificial intelligence in business. He describes what technologies are available and how companies can use them for business benefits and competitive advantage. He cuts through the hype of the AI craze—remember when it seemed plausible that IBM's Watson could cure cancer?—to explain how businesses can put artificial intelligence to work now, in the real world. His key recommendation: don't go for the “moonshot” (curing cancer, or synthesizing all investment knowledge); look for the “low-hanging fruit” to make your company more efficient. Davenport explains that the business value AI offers is solid rather than sexy or splashy. AI will improve products and processes and make decisions better informed—important but largely invisible tasks. AI technologies won't replace human workers but augment their capabilities, with smart machines to work alongside smart people. AI can automate structured and repetitive work; provide extensive analysis of data through machine learning (“analytics on steroids”), and engage with customers and employees via chatbots and intelligent agents. Companies should experiment with these technologies and develop their own expertise. Davenport describes the major AI technologies and explains how they are being used, reports on the AI work done by large commercial enterprises like Amazon and Google, and outlines strategies and steps to becoming a cognitive corporation. This book provides an invaluable guide to the real-world future of business AI. A book in the Management on the Cutting Edge series, published in cooperation with MIT Sloan Management Review.
Publisher: MIT Press
ISBN: 0262538008
Category : Business & Economics
Languages : en
Pages : 243
Book Description
Cutting through the hype, a practical guide to using artificial intelligence for business benefits and competitive advantage. In The AI Advantage, Thomas Davenport offers a guide to using artificial intelligence in business. He describes what technologies are available and how companies can use them for business benefits and competitive advantage. He cuts through the hype of the AI craze—remember when it seemed plausible that IBM's Watson could cure cancer?—to explain how businesses can put artificial intelligence to work now, in the real world. His key recommendation: don't go for the “moonshot” (curing cancer, or synthesizing all investment knowledge); look for the “low-hanging fruit” to make your company more efficient. Davenport explains that the business value AI offers is solid rather than sexy or splashy. AI will improve products and processes and make decisions better informed—important but largely invisible tasks. AI technologies won't replace human workers but augment their capabilities, with smart machines to work alongside smart people. AI can automate structured and repetitive work; provide extensive analysis of data through machine learning (“analytics on steroids”), and engage with customers and employees via chatbots and intelligent agents. Companies should experiment with these technologies and develop their own expertise. Davenport describes the major AI technologies and explains how they are being used, reports on the AI work done by large commercial enterprises like Amazon and Google, and outlines strategies and steps to becoming a cognitive corporation. This book provides an invaluable guide to the real-world future of business AI. A book in the Management on the Cutting Edge series, published in cooperation with MIT Sloan Management Review.
Explainable AI with Python
Author: Leonida Gianfagna
Publisher: Springer Nature
ISBN: 303068640X
Category : Computers
Languages : en
Pages : 202
Book Description
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Publisher: Springer Nature
ISBN: 303068640X
Category : Computers
Languages : en
Pages : 202
Book Description
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Explainable Artificial Intelligence and Solar Energy Integration
Author: Pandey, Jay Kumar
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 506
Book Description
As sustainable energy becomes the future, integrating solar power into existing systems presents critical challenges. Intelligent solutions are required to optimize energy production while maintaining transparency, reliability, and trust in decision-making processes. The growing complexity of these systems calls for advanced technologies that can ensure efficiency while addressing the unique demands of renewable energy sources. Explainable Artificial Intelligence and Solar Energy Integration explores how Explainable AI (XAI) enhances transparency in AI-driven solutions for solar energy integration. By showcasing XAI's role in improving energy efficiency and sustainability, the book bridges the gap between AI potential and real-world solar energy applications. It serves as a comprehensive resource for researchers, engineers, policymakers, and students, offering both technical insights and practical case studies.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 506
Book Description
As sustainable energy becomes the future, integrating solar power into existing systems presents critical challenges. Intelligent solutions are required to optimize energy production while maintaining transparency, reliability, and trust in decision-making processes. The growing complexity of these systems calls for advanced technologies that can ensure efficiency while addressing the unique demands of renewable energy sources. Explainable Artificial Intelligence and Solar Energy Integration explores how Explainable AI (XAI) enhances transparency in AI-driven solutions for solar energy integration. By showcasing XAI's role in improving energy efficiency and sustainability, the book bridges the gap between AI potential and real-world solar energy applications. It serves as a comprehensive resource for researchers, engineers, policymakers, and students, offering both technical insights and practical case studies.
Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning
Author: Goel, Pawan Kumar
Publisher: IGI Global
ISBN:
Category : Business & Economics
Languages : en
Pages : 689
Book Description
In the landscape of e-commerce, data security has become a concern as businesses navigate the complexities of sensitive customer information protection and cyber threat mitigation. Strategies involving cloud computing, blockchain technology, artificial intelligence, and machine learning offer solutions to strengthen data security and ensure transactional integrity. Implementing these technologies requires a balance of innovation and efficient security protocols. The development and adoption of security strategies is necessary to positively integrate cutting-edge technologies for effective security in online business. Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning addresses the need for advanced security measures, while examining the current state of e-commerce data security. It explores strategies such as cloud computing, blockchain, artificial intelligence, and machine learning. This book covers topics such as cybersecurity, cloud technology, and forensics, and is a useful resource for computer engineers, business owners, security professionals, government officials, academicians, scientists, and researchers.
Publisher: IGI Global
ISBN:
Category : Business & Economics
Languages : en
Pages : 689
Book Description
In the landscape of e-commerce, data security has become a concern as businesses navigate the complexities of sensitive customer information protection and cyber threat mitigation. Strategies involving cloud computing, blockchain technology, artificial intelligence, and machine learning offer solutions to strengthen data security and ensure transactional integrity. Implementing these technologies requires a balance of innovation and efficient security protocols. The development and adoption of security strategies is necessary to positively integrate cutting-edge technologies for effective security in online business. Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning addresses the need for advanced security measures, while examining the current state of e-commerce data security. It explores strategies such as cloud computing, blockchain, artificial intelligence, and machine learning. This book covers topics such as cybersecurity, cloud technology, and forensics, and is a useful resource for computer engineers, business owners, security professionals, government officials, academicians, scientists, and researchers.