Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions PDF full book. Access full book title Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions by C. A. Abanto-Valle. Download full books in PDF and EPUB format.

Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions

Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions PDF Author: C. A. Abanto-Valle
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 42

Book Description


Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions

Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models Using Scale Mixtures of Normal Distributions PDF Author: C. A. Abanto-Valle
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 42

Book Description


Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

The Fundamentals of Heavy Tails

The Fundamentals of Heavy Tails PDF Author: Jayakrishnan Nair
Publisher: Cambridge University Press
ISBN: 1009062964
Category : Mathematics
Languages : en
Pages : 266

Book Description
Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.

Skew-Elliptical Distributions and Their Applications

Skew-Elliptical Distributions and Their Applications PDF Author: Marc G. Genton
Publisher: CRC Press
ISBN: 0203492005
Category : Mathematics
Languages : en
Pages : 420

Book Description
This book reviews the state-of-the-art advances in skew-elliptical distributions and provides many new developments in a single volume, collecting theoretical results and applications previously scattered throughout the literature. The main goal of this research area is to develop flexible parametric classes of distributions beyond the classical no

Statistical Methods in Finance

Statistical Methods in Finance PDF Author: G. S. Maddala
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 760

Book Description
A comprehensive reference work for teaching at graduate level and research in empirical finance. The chapters cover a wide range of statistical and probabilistic methods applied to a variety of financial methods and are written by internationally renowned experts.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1116

Book Description


Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919

Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Handbook Of Heavy-tailed Distributions In Asset Management And Risk Management

Handbook Of Heavy-tailed Distributions In Asset Management And Risk Management PDF Author: Michele Leonardo Bianchi
Publisher: World Scientific
ISBN: 9813276215
Category : Business & Economics
Languages : en
Pages : 598

Book Description
The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.

Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering PDF Author: David Ruppert
Publisher: Springer
ISBN: 1493926144
Category : Business & Economics
Languages : en
Pages : 736

Book Description
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Econometric Modelling with Time Series

Econometric Modelling with Time Series PDF Author: Vance Martin
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925

Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.