Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design PDF full book. Access full book title Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design by Danny Xingqiang Xiao. Download full books in PDF and EPUB format.

Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design

Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design PDF Author: Danny Xingqiang Xiao
Publisher:
ISBN: 9781267549495
Category : Pavements
Languages : en
Pages : 544

Book Description
Reliability used in the Mechanistic Empirical Pavement Design Guide (MEPDG) is a congregated indicator defined as the probability that each of the key distress types and smoothness will be less than a selected critical level over the design period. For such a complex system as the MEPDG which does not have closed-form design equations, classic reliability methods are not applicable. A robust reliability analysis can rely on Monte Carlo Simulation (MCS). The ultimate goal of this study was to improve the reliability model of the MEPDG using surrogate modeling techniques and Monte Carlo simulation. To achieve this goal, four tasks were accomplished in this research. First, local calibration using 38 pavement sections was completed to reduce the system bias and dispersion of the nationally calibrated MEPDG. Second, uncertainty and risk in the MEPDG were identified using Hierarchical Holographic Modeling (HHM). To determine the critical factors affecting pavement performance, this study applied not only the traditional sensitivity analysis method but also the risk assessment method using the Analytic Hierarchy Process (AHP). Third, response surface models were built to provide a rapid solution of distress prediction for alligator cracking, rutting and smoothness. Fourth, a new reliability model based on Monte Carlo Simulation was proposed. Using surrogate models, 10,000 Monte Carlo simulations were calculated in minutes to develop the output ensemble, on which the predicted distresses at any reliability level were readily available. The method including all data and algorithms was packed in a user friendly software tool named ReliME. Comparison between the AASHTO 1993 Guide, the MEPDG and ReliME was presented in three case studies. It was found that the smoothness model in MEPDG had an extremely high level of variation. The product from this study was a consistent reliability model specific to local conditions, construction practices and specifications. This framework also presented the feasibility of adopting Monte Carlo Simulation for reliability analysis in future mechanistic empirical pavement design software.

Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design

Risk Analysis and Reliabilty Improvement of Mechanistic-empirical Pavement Design PDF Author: Danny Xingqiang Xiao
Publisher:
ISBN: 9781267549495
Category : Pavements
Languages : en
Pages : 544

Book Description
Reliability used in the Mechanistic Empirical Pavement Design Guide (MEPDG) is a congregated indicator defined as the probability that each of the key distress types and smoothness will be less than a selected critical level over the design period. For such a complex system as the MEPDG which does not have closed-form design equations, classic reliability methods are not applicable. A robust reliability analysis can rely on Monte Carlo Simulation (MCS). The ultimate goal of this study was to improve the reliability model of the MEPDG using surrogate modeling techniques and Monte Carlo simulation. To achieve this goal, four tasks were accomplished in this research. First, local calibration using 38 pavement sections was completed to reduce the system bias and dispersion of the nationally calibrated MEPDG. Second, uncertainty and risk in the MEPDG were identified using Hierarchical Holographic Modeling (HHM). To determine the critical factors affecting pavement performance, this study applied not only the traditional sensitivity analysis method but also the risk assessment method using the Analytic Hierarchy Process (AHP). Third, response surface models were built to provide a rapid solution of distress prediction for alligator cracking, rutting and smoothness. Fourth, a new reliability model based on Monte Carlo Simulation was proposed. Using surrogate models, 10,000 Monte Carlo simulations were calculated in minutes to develop the output ensemble, on which the predicted distresses at any reliability level were readily available. The method including all data and algorithms was packed in a user friendly software tool named ReliME. Comparison between the AASHTO 1993 Guide, the MEPDG and ReliME was presented in three case studies. It was found that the smoothness model in MEPDG had an extremely high level of variation. The product from this study was a consistent reliability model specific to local conditions, construction practices and specifications. This framework also presented the feasibility of adopting Monte Carlo Simulation for reliability analysis in future mechanistic empirical pavement design software.

Improvements to Strain Computation and Reliabilty Analysis of Flexible Pavements in the Mechanistic-empirical Pavement Design Guide

Improvements to Strain Computation and Reliabilty Analysis of Flexible Pavements in the Mechanistic-empirical Pavement Design Guide PDF Author: Senthilmurugan Thyagarajan
Publisher:
ISBN: 9781109548471
Category : Pavements
Languages : en
Pages : 179

Book Description


Enhancement and Local Calibration of Mechanistic-empirical Pavement Design Guide

Enhancement and Local Calibration of Mechanistic-empirical Pavement Design Guide PDF Author: Hongren Gong
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 152

Book Description
The Mechanistic-Empirical Pavement Design Guide (MEPDG) represents the state-of-art procedure for pavement design. However, after more than a decade since its publication, the number of agencies that have reported entirely adopting this design system is small. Among the many causes of this phenomenon, the poor predictive accuracy of the performance prediction models is considered the most crucial one. To improve the accuracy of performance predicted by the MEPDG, a preliminary calibration was first conducted for these models with data from the pavement management system (PMS) of Tennessee, and then employed various machine learning algorithms for further improvements. Also, an approach for estimating the modulus of existing asphalt pavement was proposed to enhance the reliability of rehabilitation analysis with the MEPDG. The transfer functions for alligator cracking and longitudinal cracking were validated and calibrated with data collected from the PMS of the state of Tennessee. The results of calibration efforts showed that after calibration, both the bias and variance of the prediction were significantly reduced. It was noted that although local calibration helped improve the accuracy of the transfer functions, the extent of improvement is limited. An observation of the performance models revealed that they were either inadequately formulated or too inflexible to capture sufficient information from the inputs. To further improve the predictive performance of the transfer functions in the MEPDG, several machine learning algorithms were employed including the gradient boosted model (GBM) for fatigue cracking, deep neural networks for rutting, and random forest for IRI. Using the determination of coefficient (R2) and root mean squared error (RMSE) as the measure of model performance, compared with the global transfer functions, the models developed achieved significantly better predictive performance. The results from the regularized regression model indicated that, compared with the model using deflection basins parameters (DBPs), the one without DBPs could still generate modulus prediction of reasonable accuracy. Rehabilitation analyses in the MEPDG with the estimated modulus also contributed to the improved accuracy in pavement performance prediction.

Mechanistic-empirical Pavement Design Guide

Mechanistic-empirical Pavement Design Guide PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 156051423X
Category : Pavements
Languages : en
Pages : 218

Book Description


Incorporation of Reliability Into the Minnesota Mechanistic-empirical Pavement Design Method

Incorporation of Reliability Into the Minnesota Mechanistic-empirical Pavement Design Method PDF Author:
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 136

Book Description


Implications of Reliability in Mechanistic/empirical Pavement Design Applications

Implications of Reliability in Mechanistic/empirical Pavement Design Applications PDF Author: Brian Mark Killingsworth
Publisher:
ISBN:
Category :
Languages : en
Pages : 372

Book Description


Management of Uncertainty for Flexible Pavement Design Utilizing Analytical and Probabilistic Methods

Management of Uncertainty for Flexible Pavement Design Utilizing Analytical and Probabilistic Methods PDF Author: Jennifer Queen Retherford
Publisher:
ISBN:
Category : Deformations (Mechanics)
Languages : en
Pages : 276

Book Description


Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide PDF Author:
Publisher: AASHTO
ISBN: 1560514493
Category : Technology & Engineering
Languages : en
Pages : 202

Book Description
This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Incorporation of Reliability in Mechanistic-empirical Flexible Pavement Thickness Design

Incorporation of Reliability in Mechanistic-empirical Flexible Pavement Thickness Design PDF Author: David Harold Timm
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 168

Book Description


Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions

Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions PDF Author: Stacey D. Diefenderfer
Publisher:
ISBN:
Category : Binders (Materials)
Languages : en
Pages : 44

Book Description
The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.