Author: Lisa Scalone
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Retrieval of Cirrus Optical Properties in the Near-IR Spectral Range Within the NASA ATTREX Project
Differential Optical Absorption Spectroscopy
Author: Ulrich Platt
Publisher: Springer Science & Business Media
ISBN: 3540757767
Category : Nature
Languages : en
Pages : 608
Book Description
The first part of this book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered.
Publisher: Springer Science & Business Media
ISBN: 3540757767
Category : Nature
Languages : en
Pages : 608
Book Description
The first part of this book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered.
An Introduction to Atmospheric Radiation
Author: K. N. Liou
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599
Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599
Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Analysis of Cirrus Optical Properties with Data from NASA Er2 High-Resolution Interferometer Sounder (His)
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725112667
Category :
Languages : en
Pages : 28
Book Description
The 8 to 13 micron spectral region is an important atmospheric window for radiometric studies of the Earth's surface and clouds. Most of the Earth-atmosphere longwave radiative loss to space occurs in this spectral region. Selective gaseous absorption in this window occurs in the 9.6 micron ozone band with the remaining absorption dominated by the water vapor continuum. Cirrus clouds have a large impact on the transmittance of this atmospheric window region; it is therefore important to understand the interaction of cirrus cloud with the radiation field for climate studies and in the interpretation of satellite radiometric measurements. The focus was to employ observations of the High-resolution Interferometer Sounder (HIS) made during First ISCCP Regional Experiment (FIRE) to improve the understanding of the radiative properties of cirrus clouds within this window region. Studies were undertaken to investigate the coupling between the microphysical properties of cirrus clouds and their spectral variation within this window region. Extensions of the HIS studies to satellite measurements, with regards to remote sensing and interpretation, were also investigated. Smith, William L. and Ackerman, Steven A. Unspecified Center NASA-CR-186365, NAS 1.26:186365 NAG1-1015...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725112667
Category :
Languages : en
Pages : 28
Book Description
The 8 to 13 micron spectral region is an important atmospheric window for radiometric studies of the Earth's surface and clouds. Most of the Earth-atmosphere longwave radiative loss to space occurs in this spectral region. Selective gaseous absorption in this window occurs in the 9.6 micron ozone band with the remaining absorption dominated by the water vapor continuum. Cirrus clouds have a large impact on the transmittance of this atmospheric window region; it is therefore important to understand the interaction of cirrus cloud with the radiation field for climate studies and in the interpretation of satellite radiometric measurements. The focus was to employ observations of the High-resolution Interferometer Sounder (HIS) made during First ISCCP Regional Experiment (FIRE) to improve the understanding of the radiative properties of cirrus clouds within this window region. Studies were undertaken to investigate the coupling between the microphysical properties of cirrus clouds and their spectral variation within this window region. Extensions of the HIS studies to satellite measurements, with regards to remote sensing and interpretation, were also investigated. Smith, William L. and Ackerman, Steven A. Unspecified Center NASA-CR-186365, NAS 1.26:186365 NAG1-1015...
The Future of Atmospheric Chemistry Research
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309445655
Category : Science
Languages : en
Pages : 227
Book Description
Our world is changing at an accelerating rate. The global human population has grown from 6.1 billion to 7.1 billion in the last 15 years and is projected to reach 11.2 billion by the end of the century. The distribution of humans across the globe has also shifted, with more than 50 percent of the global population now living in urban areas, compared to 29 percent in 1950. Along with these trends, increasing energy demands, expanding industrial activities, and intensification of agricultural activities worldwide have in turn led to changes in emissions that have altered the composition of the atmosphere. These changes have led to major challenges for society, including deleterious impacts on climate, human and ecosystem health. Climate change is one of the greatest environmental challenges facing society today. Air pollution is a major threat to human health, as one out of eight deaths globally is caused by air pollution. And, future food production and global food security are vulnerable to both global change and air pollution. Atmospheric chemistry research is a key part of understanding and responding to these challenges. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow summarizes the rationale and need for supporting a comprehensive U.S. research program in atmospheric chemistry; comments on the broad trends in laboratory, field, satellite, and modeling studies of atmospheric chemistry; determines the priority areas of research for advancing the basic science of atmospheric chemistry; and identifies the highest priority needs for improvements in the research infrastructure to address those priority research topics. This report describes the scientific advances over the past decade in six core areas of atmospheric chemistry: emissions, chemical transformation, oxidants, atmospheric dynamics and circulation, aerosol particles and clouds, and biogeochemical cycles and deposition. This material was developed for the NSF's Atmospheric Chemistry Program; however, the findings will be of interest to other agencies and programs that support atmospheric chemistry research.
Publisher: National Academies Press
ISBN: 0309445655
Category : Science
Languages : en
Pages : 227
Book Description
Our world is changing at an accelerating rate. The global human population has grown from 6.1 billion to 7.1 billion in the last 15 years and is projected to reach 11.2 billion by the end of the century. The distribution of humans across the globe has also shifted, with more than 50 percent of the global population now living in urban areas, compared to 29 percent in 1950. Along with these trends, increasing energy demands, expanding industrial activities, and intensification of agricultural activities worldwide have in turn led to changes in emissions that have altered the composition of the atmosphere. These changes have led to major challenges for society, including deleterious impacts on climate, human and ecosystem health. Climate change is one of the greatest environmental challenges facing society today. Air pollution is a major threat to human health, as one out of eight deaths globally is caused by air pollution. And, future food production and global food security are vulnerable to both global change and air pollution. Atmospheric chemistry research is a key part of understanding and responding to these challenges. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow summarizes the rationale and need for supporting a comprehensive U.S. research program in atmospheric chemistry; comments on the broad trends in laboratory, field, satellite, and modeling studies of atmospheric chemistry; determines the priority areas of research for advancing the basic science of atmospheric chemistry; and identifies the highest priority needs for improvements in the research infrastructure to address those priority research topics. This report describes the scientific advances over the past decade in six core areas of atmospheric chemistry: emissions, chemical transformation, oxidants, atmospheric dynamics and circulation, aerosol particles and clouds, and biogeochemical cycles and deposition. This material was developed for the NSF's Atmospheric Chemistry Program; however, the findings will be of interest to other agencies and programs that support atmospheric chemistry research.
Global Physical Climatology
Author: Dennis L. Hartmann
Publisher: Academic Press
ISBN: 0080571638
Category : Science
Languages : en
Pages : 425
Book Description
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
Publisher: Academic Press
ISBN: 0080571638
Category : Science
Languages : en
Pages : 425
Book Description
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
Cloud Dynamics
Author: Robert A. Houze Jr.
Publisher: Elsevier
ISBN: 0080502105
Category : Science
Languages : en
Pages : 605
Book Description
Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences.Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Presents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understanding - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level
Publisher: Elsevier
ISBN: 0080502105
Category : Science
Languages : en
Pages : 605
Book Description
Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences.Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Presents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understanding - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level
An Introduction to Clouds
Author: Ulrike Lohmann
Publisher: Cambridge University Press
ISBN: 1316586251
Category : Science
Languages : en
Pages : 419
Book Description
An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.
Publisher: Cambridge University Press
ISBN: 1316586251
Category : Science
Languages : en
Pages : 419
Book Description
An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.
Weather Modification Activities
Statistical Postprocessing of Ensemble Forecasts
Author: Stéphane Vannitsem
Publisher: Elsevier
ISBN: 012812248X
Category : Science
Languages : en
Pages : 364
Book Description
Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner
Publisher: Elsevier
ISBN: 012812248X
Category : Science
Languages : en
Pages : 364
Book Description
Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner