Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice PDF full book. Access full book title Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice by B. T. Sinare. Download full books in PDF and EPUB format.

Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice

Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice PDF Author: B. T. Sinare
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Book Description


Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice

Response of Different Genotypes of Sweet Sorghum of Split Application of Nitrogen of Growth, Yield and Juice PDF Author: B. T. Sinare
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Book Description


Response of Different Genotyps of Sweet Sorghum to Split Application of Nitrogen on Growth, Yield and Juice Quality

Response of Different Genotyps of Sweet Sorghum to Split Application of Nitrogen on Growth, Yield and Juice Quality PDF Author: B. T. Sinare
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Book Description


Characterization of Improved Sweet Sorghum Cultivars

Characterization of Improved Sweet Sorghum Cultivars PDF Author: P. Srinivasa Rao
Publisher: Springer Science & Business Media
ISBN: 8132207831
Category : Technology & Engineering
Languages : en
Pages : 134

Book Description
A number of driving forces, including the soaring global crude oil prices and environmental concerns in both developed and developing nations has triggered a renewed interest in the recent years on the R&D of biofuel crops. In this regard, many countries across the globe are investing heavily in the bioenergy sector for R&D to increase their energy security and reduce their dependence on imported fossil fuels. Currently, most of the biofuel requirement is met by sugarcane in Brazil and corn in the United States, while biodiesel from rapeseed oil in Europe. Sweet sorghum has been identified as a unique biofuel feedstock in India since it is well adapted to Indian agro-climatic conditions and more importantly it does not jeopardize food security at the cost of fuel. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered as a SMART new generation energy crop as it can accumulate sugars in its stalks similar to sugarcane, but without food¬¬-fuel trade-offs and can be cultivated in almost all temperate and tropical climatic conditions and has many other advantages. The grain can be harvested from the panicles at maturity. There is no single publication detailing the agronomic and biochemical traits of tropical sweet sorghum cultivars and hybrid parents. Hence, an attempt is made in this publication- “Characterization of improved sweet sorghum cultivars” to detail the complete description of cultivars. This book serves as a ready reference on the detailed characterization of different improved sweet sorghum genotypes following the PPVFRA guidelines for the researchers, entrepreneurs, farmers and other stakeholders to identify the available sweet sorghum cultivars and understand their yield potential in tropics.

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production

Agronomical, Physiological and Biochemical Approaches to Characterize Sweet Sorghum Genotypes for Biofuel Production PDF Author: Satheesh K. Subramanian
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop. There is a wide array of genetic diversity in sweet sorghum germplasm collections. However, information on traits associated with sugar yield, optimum harvesting time for maximum sugar yield, effects of abiotic stresses on sugar yield is scarce. The objectives of the present study were: to identify traits that are associated with sugar yield, to determine the optimum harvesting time for maximum sugar yield and to understand the physiological responses of different sweet sorghum genotypes to drought and high temperature. In order to meet these objectives, five independent field and greenhouse studies were conducted. Field experiments were conducted using 280 sweet sorghum germplasm and were evaluated for 2 years. From this study, 30 genotypes representing high and low sugar yielders were selected for the subsequent experiment. We observed a significant variation in physiological, morphological and sugar yield traits associated with biofuel production. In the selection experiment, investigations on the morphological, physiological attributes helped to identify those characters which influence or limit sugar yield in the sweet sorghum. Another field study was conducted to optimize the harvesting time for obtaining highest sugar and juice yields in sweet sorghum. Sweet sorghum variety M81E was harvested at ten growth stages. Our results suggest that the optimum time for harvesting of sweet sorghum cultivar M81E is between milk and hard dough stages when highest sugar yield was observed. Studies on different levels of water stress were studied under greenhouse conditions. Four sweet sorghum genotypes (Awanlek, Smith, Tracy and Wray) were subjected to three water stress treatments (100% pot capacity (PC); 70% PC and 30% PC) for 20 days at early seed filling (Milk) stage. The results showed that genotypes differed significantly for all growth and yield, biochemical and physiological traits. Severe water stress significantly decreased juice and sugar yields by decreasing net photosynthetic rate, transpiration rate, stomatal conductance and sucrose content in the stem juice. Genotypes Tracy and Wray produced significantly highest brix, stem fresh weight, juice and sugar yield under both irrigated and water stress conditions. In another greenhouse study, we quantified the effects of drought, high temperature, and their combinations on growth, physiology and yield of sweet sorghum genotypes. The same four genotypes above were subjected to four treatments, T1 - control, T2 - drought stress, T3 - high temperature stress and T4 - combination of drought and high temperature for 16 days after anthesis. The result showed that significant difference was observed for growth and yield traits, physiological traits and non-reducing and total sugar content in juice for genotypes and treatments. Among the genotypes Tracy recorded higher juice and sugar yield. Among the various treatments, combination of drought and high temperature was found to be more deleterious in reducing most of the biofuel traits followed by drought and high temperature stress. The above studies gave significant findings with regards to the identification of superior sweet sorghum germplasm, their tolerance capacity to different abiotic stresses, which allows better selection for the use of bioenergy production.

Differences in Dry Matter Yield and the Uptake, Distribution, and Use of Nitrogen by Sorghum Genotypes

Differences in Dry Matter Yield and the Uptake, Distribution, and Use of Nitrogen by Sorghum Genotypes PDF Author: Goncalo Evangelista de Franca
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Book Description
Fifty-four sorghum (Sorghum bicolor (L.) Moench) genotypes were screened for differential response to N by growing plants with 10 mg N/ plant in nutrient solution. The genotypes TX 3934 X GH-8-17, and SC 423 X SC 239 produced the highest amount of dry matter per unit N (H), and SC 110 X SC 120, and SC 150-6 X SC 150-9 (L) produced the low-est amount of dry matter per unit N. Because of this, these genotypes were selected for further study to identify physiological properties that may be associated with differential N nutrition. The physiological properties evaluated in these genotypes were: (1) NO3 uptake rates as affected by time (hours after being put in a new N03 solution), N03 concentration, and plant age; (2) dry matter and N accumulation with plant age;(3) N distribution among plant parts at various plant ages; (4) dry matter produced per unit N; (5) genotype responses to different N levels and N compounds. Differential responses to N were moted among the genotypes screened with low N. The ranges were 131% for dry matter yields, 75% for N contents, 59% for top N/root N ratios, and 34% for dry matter produced per unit N. After an initial slow rate of N03 uptake, N03 absorption was relatively rapid during the next four hours before leveling off or decreasing after six hours in plants 34 days of age or younger; plants older than this showed no differences in N03 uptake. Patterns of N03 uptake with time suggested that uptake was induced by N03 at low concentrations. Differences in N03 uptake rates among (...).

Plasticity of Sorghum Biomass and Inflorescence Traits in Response to Nitrogen Application

Plasticity of Sorghum Biomass and Inflorescence Traits in Response to Nitrogen Application PDF Author: Kyle M. Linders
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Nitrogen is an essential nutrient required for growth and development in plants. Insufficient nitrogen availability can reduce vegetative growth and grain yield. However, nitrogen is a costly input for farmers, is energy intensive to manufacture, and runoff of excess nitrogen fertilizer impacts water quality. Compared to its close relative, maize, sorghum has much greater resilience to nitrogen and water deficit, and heat stress, allowing sorghum to be grown with fewer inputs and on marginal land. Variation in total biomass accumulation and grain yield between sorghum accessions, as well as between nitrogen conditions, can be largely explained by differences in vegetative growth and inflorescence architecture traits. Previous genome-wide association studies (GWAS) in sorghum have identified genetic markers associated with genes known to play roles in controlling growth and development. However, these studies have typically been conducted using field trials with “optimal” nitrogen application conditions. A set of 345 diverse inbred lines from the Sorghum Association Panel (SAP) were grown under both standard nitrogen application (N+) and no nitrogen application (N-) treatments, and a range of biomass and inflorescence-related traits were phenotyped, including plant height, lower and upper stem diameter, rachis length, lower and upper rachis diameter, and primary branch number. Stem volume, an approximation of biomass, was calculated from the directly measured traits. Stem volume was, on average, 10.48% higher for genotypes in nitrogen fertilized blocks, than for genetically identical plants in no nitrogen application blocks. Within individual treatment conditions, between 58.1% and 90.7% of the total variation for the measured and calculated traits could be explained by genetic factors. Genome-wide association studies were conducted to identify genetic markers associated with these traits in order to better understand the genetic factors involved in nitrogen stress response for potential use in breeding improved sorghum varieties.

Sweet Sorghum and Nitrogen

Sweet Sorghum and Nitrogen PDF Author: Khaled Miri
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659180354
Category :
Languages : de
Pages : 204

Book Description
Sweet sorghum is versatile as a high value crop. Besides, bio-fuel, feed and fodder, it is very interesting for low cost and nutritious food . It has the potential of becoming a useful energy crop. It has been evaluated as an alcohol fuel crop with a promising future. This crop is attractive because of the easy accessibility of readily fermentable sugars combined with very high yields of green biomass suitable for production of more quantity of ethanol per unit time, per unit cost and per unit of water used . In India, it has been used for nearly 150 years to produce concentrated syrup with a distinctive flavor due to its characteristic of juicy stalks high in sugar. The ethanol production process is more Eco-friendly than that of sugarcane and its molasses (Morris, 2006). Nitrogen fertilizer combined with other inputs play crucial roles in yield and overall quality of sweet sorghum products. The present book is parts of studies which were conducted to determine suitable genotype and nitrogen level for higher productivity, nitrogen use efficiency and economic returns from sweet sorghum cultivation.

Effect of Levels of Fertilizer Nitrogen and Potassium on Growth, Yield and Quality of Sweet Sorghum (Sorghum Bicolor L. Moench) Cultivars

Effect of Levels of Fertilizer Nitrogen and Potassium on Growth, Yield and Quality of Sweet Sorghum (Sorghum Bicolor L. Moench) Cultivars PDF Author: FATHIMA P. S
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description


Effect of Nitrogen, Potassium and Crushing Period on Juice Quality and Yield of Sweet Sorghum

Effect of Nitrogen, Potassium and Crushing Period on Juice Quality and Yield of Sweet Sorghum PDF Author: TELI C. B
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Book Description


Assesment of Sorghum Response to Nitrogen Availability

Assesment of Sorghum Response to Nitrogen Availability PDF Author: Fatima Awada
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Seven accessions of Sorghum bicolor were grown with low (N−) and optimal (N+) nitrate supply. Growth parameters (plant height and leaf numbers), physiological parameters (nitrate, protein, total N and total C contents) and the activity of glutamine synthetase (GS) were studied in leaves and roots of sorghum plants at three time points of early vegetative growth (2, 4 and, 6 weeks post emergence). Plant height and leaf number were higher with nitrate supply. Except for carbon, all studied parameters were sensitive to N availability and values were typically lower when nitrate supply was low. However, different genotypes displayed considerable variation in their response to N regimes. Variation among genotypes during early vegetative development was observed for plant height, but not for leaf number. Likewise, physiological parameters varied among accessions. A significant and strong correlation, N- and accession-dependent, was detected between plant height and nitrate content. Moreover, nitrate content and GS activity at early growth stages appeared to be good markers to discriminate between nitrate uptake and assimilation capacities of different accessions under both N conditions. In some sorghum accessions, protein and total N content were indicative of high nitrate reduction and assimilation even under N limitation. Chlorophyll content was also sensitive to N availability. Furthermore, expression studies of SbNRT1.1gene copies in leaves and roots of two accessions reflected variability in expression dependent on nitrogen condition, plant organ, plant age, and gene of interest. This study is helpful to characterize different aspects of the N metabolism in sorghum and may aid in the identification of sorghum genotypes with enhanced nitrogen use efficiency, a trait that is of key interest in one of the most important crop plants in arid and semi-arid regions.