Author: Eric Ralph Paërl
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 236
Book Description
Representations of the Lorentz Group and Projective Geometry
Author: Eric Ralph Paërl
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 236
Book Description
Linear Representations of the Lorentz Group
Author: M. A. Naimark
Publisher: Elsevier
ISBN: 1483184986
Category : Mathematics
Languages : en
Pages : 465
Book Description
Linear Representations of the Lorentz Group is a systematic exposition of the theory of linear representations of the proper Lorentz group and the complete Lorentz group. This book consists of four chapters. The first two chapters deal with the basic material on the three-dimensional rotation group, on the complete Lorentz group and the proper Lorentz group, as well as the theory of representations of the three-dimensional rotation group. These chapters also provide the necessary basic information from the general theory of group representations. The third chapter is devoted to the representations of the proper Lorentz group and the complete Lorentz group, while the fourth chapter examines the theory of invariant equations. This book will prove useful to mathematicians and students.
Publisher: Elsevier
ISBN: 1483184986
Category : Mathematics
Languages : en
Pages : 465
Book Description
Linear Representations of the Lorentz Group is a systematic exposition of the theory of linear representations of the proper Lorentz group and the complete Lorentz group. This book consists of four chapters. The first two chapters deal with the basic material on the three-dimensional rotation group, on the complete Lorentz group and the proper Lorentz group, as well as the theory of representations of the three-dimensional rotation group. These chapters also provide the necessary basic information from the general theory of group representations. The third chapter is devoted to the representations of the proper Lorentz group and the complete Lorentz group, while the fourth chapter examines the theory of invariant equations. This book will prove useful to mathematicians and students.
Representations of the Rotation and Lorentz Groups and Their Applications
Author: I. M. Gelfand
Publisher: Courier Dover Publications
ISBN: 0486823857
Category : Science
Languages : en
Pages : 385
Book Description
This monograph on the description and study of representations of the rotation group of three-dimensional space and of the Lorentz group features advanced topics and techniques crucial to many areas of modern theoretical physics. Prerequisites include a familiarity with the differential and integral calculus of several variables and the fundamentals of linear algebra. Suitable for advanced undergraduate and graduate students in mathematical physics, the book is also designed for mathematicians studying the representations of Lie groups, for whom it can serve as an introduction to the general theory of representation. The treatment encompasses all the basic material of the theory of representations used in quantum mechanics. The two-part approach begins with representations of the group of rotations of three-dimensional space, analyzing the rotation group and its representations. The second part, covering representations of the Lorentz group, includes an exploration of relativistic-invariant equations. The text concludes with three helpful supplements and a bibliography.
Publisher: Courier Dover Publications
ISBN: 0486823857
Category : Science
Languages : en
Pages : 385
Book Description
This monograph on the description and study of representations of the rotation group of three-dimensional space and of the Lorentz group features advanced topics and techniques crucial to many areas of modern theoretical physics. Prerequisites include a familiarity with the differential and integral calculus of several variables and the fundamentals of linear algebra. Suitable for advanced undergraduate and graduate students in mathematical physics, the book is also designed for mathematicians studying the representations of Lie groups, for whom it can serve as an introduction to the general theory of representation. The treatment encompasses all the basic material of the theory of representations used in quantum mechanics. The two-part approach begins with representations of the group of rotations of three-dimensional space, analyzing the rotation group and its representations. The second part, covering representations of the Lorentz group, includes an exploration of relativistic-invariant equations. The text concludes with three helpful supplements and a bibliography.
The Collected Works of Eugene Paul Wigner
Author:
Publisher: Springer Science & Business Media
ISBN: 366202781X
Category : Mathematics
Languages : en
Pages : 725
Book Description
Eugene Wigner is one of the few giants of 20th-century physics. The present annotated volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics.
Publisher: Springer Science & Business Media
ISBN: 366202781X
Category : Mathematics
Languages : en
Pages : 725
Book Description
Eugene Wigner is one of the few giants of 20th-century physics. The present annotated volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics.
The Collected Works of Eugene Paul Wigner
Author: Eugene Paul Wigner
Publisher: Springer Science & Business Media
ISBN: 9783540565604
Category : Mathematics
Languages : en
Pages : 746
Book Description
Eugene Wigner is one of the few giants of 20th-century physics. The present annotated volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics.
Publisher: Springer Science & Business Media
ISBN: 9783540565604
Category : Mathematics
Languages : en
Pages : 746
Book Description
Eugene Wigner is one of the few giants of 20th-century physics. The present annotated volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics.
Spinors, Twistors, Clifford Algebras and Quantum Deformations
Author: Andrzej Borowiec
Publisher: Springer Science & Business Media
ISBN: 9401117195
Category : Science
Languages : en
Pages : 433
Book Description
ZBIGNIEW OZIEWICZ University of Wroclaw, Poland December 1992 The First Max Born Symposium in Theoretical and Mathematical Phy sics, organized by the University of Wrodaw, was held in September 1991 with the intent that it would become an annual event. It is the outgrowth of the annual Seminars organized jointly since 1972 with the University of Leipzig. The name of the Symposia was proposed by Professor Jan Lopu szanski. Max Born, an outstanding German theoretical physicist, was born in 1883 in Breslau (the German name of Wrodaw) and educated here. The Second Max Born Symposium was held during the four days 24- 27 September 1992 in an old Sobotka Castle 30 km west of Wrodaw. The Sobotka Castle was built in the eleventh century. The dates engraved on the walls of the Castle are 1024, 1140, and at the last rebuilding, 1885. The castle served as a cloister until the end of the sixteenth century.
Publisher: Springer Science & Business Media
ISBN: 9401117195
Category : Science
Languages : en
Pages : 433
Book Description
ZBIGNIEW OZIEWICZ University of Wroclaw, Poland December 1992 The First Max Born Symposium in Theoretical and Mathematical Phy sics, organized by the University of Wrodaw, was held in September 1991 with the intent that it would become an annual event. It is the outgrowth of the annual Seminars organized jointly since 1972 with the University of Leipzig. The name of the Symposia was proposed by Professor Jan Lopu szanski. Max Born, an outstanding German theoretical physicist, was born in 1883 in Breslau (the German name of Wrodaw) and educated here. The Second Max Born Symposium was held during the four days 24- 27 September 1992 in an old Sobotka Castle 30 km west of Wrodaw. The Sobotka Castle was built in the eleventh century. The dates engraved on the walls of the Castle are 1024, 1140, and at the last rebuilding, 1885. The castle served as a cloister until the end of the sixteenth century.
The Geometry of Heisenberg Groups
Author: Ernst Binz
Publisher: American Mathematical Soc.
ISBN: 0821844954
Category : Mathematics
Languages : en
Pages : 321
Book Description
"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821844954
Category : Mathematics
Languages : en
Pages : 321
Book Description
"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.
Integral Geometry and Representation Theory
Author: I. M. Gel'fand
Publisher: Academic Press
ISBN: 1483262251
Category : Mathematics
Languages : en
Pages : 468
Book Description
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one. This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of complex unimodular matrices in two dimensions. The properties of the Fourier transform on G, integral geometry in a space of constant curvature, harmonic analysis on spaces homogeneous with respect to the Lorentz Group, and invariance under translation and dilation are also described. This volume is suitable for mathematicians, specialists, and students learning integral geometry and representation theory.
Publisher: Academic Press
ISBN: 1483262251
Category : Mathematics
Languages : en
Pages : 468
Book Description
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one. This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of complex unimodular matrices in two dimensions. The properties of the Fourier transform on G, integral geometry in a space of constant curvature, harmonic analysis on spaces homogeneous with respect to the Lorentz Group, and invariance under translation and dilation are also described. This volume is suitable for mathematicians, specialists, and students learning integral geometry and representation theory.
Geometry of Quantum Theory
Author: Veeravalli S. Varadarajan
Publisher:
ISBN:
Category :
Languages : en
Pages : 255
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 255
Book Description
Quantum Theory, Groups and Representations
Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Category : Science
Languages : en
Pages : 659
Book Description
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.
Publisher: Springer
ISBN: 3319646125
Category : Science
Languages : en
Pages : 659
Book Description
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.