Representation Theory of Algebraic Groups and Quantum Groups PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Representation Theory of Algebraic Groups and Quantum Groups PDF full book. Access full book title Representation Theory of Algebraic Groups and Quantum Groups by Toshiaki Shoji. Download full books in PDF and EPUB format.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
ISBN:
Category : Computers
Languages : en
Pages : 514

Book Description
A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
ISBN:
Category : Computers
Languages : en
Pages : 514

Book Description
A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups PDF Author: Ken Brown
Publisher: Birkhäuser
ISBN: 303488205X
Category : Mathematics
Languages : en
Pages : 339

Book Description
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations PDF Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Category : Science
Languages : en
Pages : 659

Book Description
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

A Guide to Quantum Groups

A Guide to Quantum Groups PDF Author: Vyjayanthi Chari
Publisher: Cambridge University Press
ISBN: 9780521558846
Category : Mathematics
Languages : en
Pages : 672

Book Description
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.

Quantum Groups and Their Representations

Quantum Groups and Their Representations PDF Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568

Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.

Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory PDF Author:
Publisher: Elsevier
ISBN: 0080526950
Category : Mathematics
Languages : en
Pages : 357

Book Description
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

Representations of Algebraic Groups, Quantum Groups, and Lie Algebras

Representations of Algebraic Groups, Quantum Groups, and Lie Algebras PDF Author: Georgia Benkart
Publisher: American Mathematical Soc.
ISBN: 0821839241
Category : Mathematics
Languages : en
Pages : 270

Book Description
Covers various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. This book outlines connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic.

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations PDF Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524

Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Representations of Reductive Groups

Representations of Reductive Groups PDF Author: Roger W. Carter
Publisher: Cambridge University Press
ISBN: 0521643252
Category : Mathematics
Languages : en
Pages : 203

Book Description
This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.

Representation Theories and Algebraic Geometry

Representation Theories and Algebraic Geometry PDF Author: A. Broer
Publisher: Springer Science & Business Media
ISBN: 9401591318
Category : Mathematics
Languages : en
Pages : 455

Book Description
The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.