Relative Bounded Cohomology and Relative L1 Homology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Relative Bounded Cohomology and Relative L1 Homology PDF full book. Access full book title Relative Bounded Cohomology and Relative L1 Homology by HeeSook Park. Download full books in PDF and EPUB format.

Relative Bounded Cohomology and Relative L1 Homology

Relative Bounded Cohomology and Relative L1 Homology PDF Author: HeeSook Park
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 222

Book Description


Relative Bounded Cohomology and Relative L1 Homology

Relative Bounded Cohomology and Relative L1 Homology PDF Author: HeeSook Park
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 222

Book Description


Bounded Cohomology of Discrete Groups

Bounded Cohomology of Discrete Groups PDF Author: Roberto Frigerio
Publisher: American Mathematical Soc.
ISBN: 1470441462
Category : Mathematics
Languages : en
Pages : 213

Book Description
The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.

Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume

Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume PDF Author: Roberto Frigerio
Publisher: American Mathematical Society
ISBN: 1470459914
Category : Mathematics
Languages : en
Pages : 166

Book Description
View the abstract.

Continuous Bounded Cohomology of Locally Compact Groups

Continuous Bounded Cohomology of Locally Compact Groups PDF Author: Nicolas Monod
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219

Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.

Journal of the Korean Mathematical Society

Journal of the Korean Mathematical Society PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 564

Book Description


Bounded Cohomology and Simplicial Volume

Bounded Cohomology and Simplicial Volume PDF Author: Caterina Campagnolo
Publisher: Cambridge University Press
ISBN: 100918329X
Category : Mathematics
Languages : en
Pages : 171

Book Description
An overview of bounded cohomology and simplicial volume covering the basics of the subject and recent research directions.

Issues in General and Specialized Mathematics Research: 2013 Edition

Issues in General and Specialized Mathematics Research: 2013 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1490112162
Category : Mathematics
Languages : en
Pages : 1919

Book Description
Issues in General and Specialized Mathematics Research: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology PDF Author: James F. Davis
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385

Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Transcendence and Linear Relations of 1-Periods

Transcendence and Linear Relations of 1-Periods PDF Author: Annette Huber
Publisher: Cambridge University Press
ISBN: 1009022717
Category : Mathematics
Languages : en
Pages : 266

Book Description
This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of π, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.

Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology PDF Author: Carlo Mazza
Publisher: American Mathematical Soc.
ISBN: 9780821838471
Category : Mathematics
Languages : en
Pages : 240

Book Description
The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).