Author: Thomas H. Adair
Publisher: Morgan & Claypool Publishers
ISBN: 1615043306
Category : Medical
Languages : en
Pages : 85
Book Description
Angiogenesis is the growth of blood vessels from the existing vasculature. The field of angiogenesis has grown enormously in the past 30 years, with only 40 papers published in 1980 and nearly 6000 in 2010. Why has there been this explosive growth in angiogenesis research? Angiogenic therapies provide a potential to conquer cancer, heart diseases, and more than 70 of life's most threatening medical conditions. The lives of at least 1 billion people worldwide could be improved with angiogenic therapy, according to the Angiogenesis Foundation. In this little book, we provide a simple approach to understand the essential elements of the angiogenic process, we critique the most powerful angiogenesis assays that are used to discover proangiogenic and antiangiogenic substances, and we provide an in-depth physiological perspective on how angiogenesis is regulated in normal, healthy tissues of the human body. All tissues of the body require a continuous supply of oxygen to burn metabolic substrates that are needed for energy. Oxygen is conducted to these tissues by blood capillaries: more capillaries can improve tissue oxygenation and thus enhance energy production; fewer capillaries can lead to hypoxia and even anoxia in the tissues. This means that angiogenic therapies designed to control the growth and regression of blood capillaries can be used to improve the survival of poorly perfused tissues that are essential to the body (heart, brain, skeletal muscle, etc.) and to rid the body of unwanted tissues (tumors). Table of Contents: Overview of Angiogenesis / Angiogenesis Assays / Regulation: Metabolic Factors / Regulation: Mechanical Factors / Glossary / References / Author Biographies
Angiogenesis
Author: Thomas H. Adair
Publisher: Morgan & Claypool Publishers
ISBN: 1615043306
Category : Medical
Languages : en
Pages : 85
Book Description
Angiogenesis is the growth of blood vessels from the existing vasculature. The field of angiogenesis has grown enormously in the past 30 years, with only 40 papers published in 1980 and nearly 6000 in 2010. Why has there been this explosive growth in angiogenesis research? Angiogenic therapies provide a potential to conquer cancer, heart diseases, and more than 70 of life's most threatening medical conditions. The lives of at least 1 billion people worldwide could be improved with angiogenic therapy, according to the Angiogenesis Foundation. In this little book, we provide a simple approach to understand the essential elements of the angiogenic process, we critique the most powerful angiogenesis assays that are used to discover proangiogenic and antiangiogenic substances, and we provide an in-depth physiological perspective on how angiogenesis is regulated in normal, healthy tissues of the human body. All tissues of the body require a continuous supply of oxygen to burn metabolic substrates that are needed for energy. Oxygen is conducted to these tissues by blood capillaries: more capillaries can improve tissue oxygenation and thus enhance energy production; fewer capillaries can lead to hypoxia and even anoxia in the tissues. This means that angiogenic therapies designed to control the growth and regression of blood capillaries can be used to improve the survival of poorly perfused tissues that are essential to the body (heart, brain, skeletal muscle, etc.) and to rid the body of unwanted tissues (tumors). Table of Contents: Overview of Angiogenesis / Angiogenesis Assays / Regulation: Metabolic Factors / Regulation: Mechanical Factors / Glossary / References / Author Biographies
Publisher: Morgan & Claypool Publishers
ISBN: 1615043306
Category : Medical
Languages : en
Pages : 85
Book Description
Angiogenesis is the growth of blood vessels from the existing vasculature. The field of angiogenesis has grown enormously in the past 30 years, with only 40 papers published in 1980 and nearly 6000 in 2010. Why has there been this explosive growth in angiogenesis research? Angiogenic therapies provide a potential to conquer cancer, heart diseases, and more than 70 of life's most threatening medical conditions. The lives of at least 1 billion people worldwide could be improved with angiogenic therapy, according to the Angiogenesis Foundation. In this little book, we provide a simple approach to understand the essential elements of the angiogenic process, we critique the most powerful angiogenesis assays that are used to discover proangiogenic and antiangiogenic substances, and we provide an in-depth physiological perspective on how angiogenesis is regulated in normal, healthy tissues of the human body. All tissues of the body require a continuous supply of oxygen to burn metabolic substrates that are needed for energy. Oxygen is conducted to these tissues by blood capillaries: more capillaries can improve tissue oxygenation and thus enhance energy production; fewer capillaries can lead to hypoxia and even anoxia in the tissues. This means that angiogenic therapies designed to control the growth and regression of blood capillaries can be used to improve the survival of poorly perfused tissues that are essential to the body (heart, brain, skeletal muscle, etc.) and to rid the body of unwanted tissues (tumors). Table of Contents: Overview of Angiogenesis / Angiogenesis Assays / Regulation: Metabolic Factors / Regulation: Mechanical Factors / Glossary / References / Author Biographies
Angiogenesis Assays
Author: Carolyn A. Staton
Publisher: John Wiley & Sons
ISBN: 047002934X
Category : Medical
Languages : en
Pages : 410
Book Description
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
Publisher: John Wiley & Sons
ISBN: 047002934X
Category : Medical
Languages : en
Pages : 410
Book Description
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
Vascular Development
Author: Derek J. Chadwick
Publisher: John Wiley & Sons
ISBN: 0470319429
Category : Science
Languages : en
Pages : 260
Book Description
The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.
Publisher: John Wiley & Sons
ISBN: 0470319429
Category : Science
Languages : en
Pages : 260
Book Description
The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.
Regulation of Angiogenesis
Author: I.D. Goldberg
Publisher: Springer Science & Business Media
ISBN: 9783764353094
Category : Medical
Languages : en
Pages : 520
Book Description
thrombospondin-l may be encoded by a tumor suppressor gene. Dr. O'Reilly discusses angiostatin, an exciting recently discovered factor derived from the fibrinolytic proenzyme plasminogen that inhibits tumor angiogenesis, primary tumor growth, and formation of metastases. In addition to the soluble class of angiogenesis-regulatory factors discussed above, interactions of endothelial cells with components of the extracellular matrix and with other cell types are critical for proper formation of vessels. Drs. Grant and Kleinman discuss the role of laminin and other matrix molecules in regulation of capillary formation. Dr. van Hinsbergh and colleagues describe the role of fibrin and the fibrinolytic system in angiogenesis associated with wound repair. Cell surface mole cules that interact with the extracellular matrix have been implicated in the regulation of angiogenesis. Dr. Varner discusses some exciting new studies on the roles of specific vascular cell integrins (a /33 and a /3s) in mediating v v tumor angiogenesis and angiogenesis associated with wound healing. The pericyte, a vascular smooth muscle-like cell, exerts a powerful regulatory effect during the later stages of angiogenesis in which mature capillaries are formed. These mechanisms are discussed by Drs. Hirschi and D' Amore. With all the recent progress in the molecular biology of angiogenesis, the contribution of microenvironmental conditions such as hypoxia and pH to angiogenesis is often ignored. Drs. Rockwell and Knisely review this area of investigation and present studies of experimental tumor models.
Publisher: Springer Science & Business Media
ISBN: 9783764353094
Category : Medical
Languages : en
Pages : 520
Book Description
thrombospondin-l may be encoded by a tumor suppressor gene. Dr. O'Reilly discusses angiostatin, an exciting recently discovered factor derived from the fibrinolytic proenzyme plasminogen that inhibits tumor angiogenesis, primary tumor growth, and formation of metastases. In addition to the soluble class of angiogenesis-regulatory factors discussed above, interactions of endothelial cells with components of the extracellular matrix and with other cell types are critical for proper formation of vessels. Drs. Grant and Kleinman discuss the role of laminin and other matrix molecules in regulation of capillary formation. Dr. van Hinsbergh and colleagues describe the role of fibrin and the fibrinolytic system in angiogenesis associated with wound repair. Cell surface mole cules that interact with the extracellular matrix have been implicated in the regulation of angiogenesis. Dr. Varner discusses some exciting new studies on the roles of specific vascular cell integrins (a /33 and a /3s) in mediating v v tumor angiogenesis and angiogenesis associated with wound healing. The pericyte, a vascular smooth muscle-like cell, exerts a powerful regulatory effect during the later stages of angiogenesis in which mature capillaries are formed. These mechanisms are discussed by Drs. Hirschi and D' Amore. With all the recent progress in the molecular biology of angiogenesis, the contribution of microenvironmental conditions such as hypoxia and pH to angiogenesis is often ignored. Drs. Rockwell and Knisely review this area of investigation and present studies of experimental tumor models.
Angiogenesis
Author: Michael E. Maragoudakis
Publisher: Springer
ISBN: 030646375X
Category : Medical
Languages : en
Pages : 382
Book Description
Proceedings of the 5th Biannual International Meeting on Angiogenesis: From the Molecular to Integrative Pharmacology, held July 1-7, 1999, in Crete, Greece. Angiogenesis, as a vastly complex biological process, has challenged researchers from all basic scientific disciplines, including pharmacology, biochemistry, physiology, embryology and anatomy. The significance of this phenomenon for the study of disease states has also interested clinicians from a number of specialist fields. This multidisciplinary work reflects the growth of awareness of concepts such as angiogenesis based therapy, the enormous therapeutic and commercial potential of which has attracted major research and investment in recent years. This volume, which aims to bridge the gap between basic and clinical methodology and understanding, presents the most up-to-date developments in this field.
Publisher: Springer
ISBN: 030646375X
Category : Medical
Languages : en
Pages : 382
Book Description
Proceedings of the 5th Biannual International Meeting on Angiogenesis: From the Molecular to Integrative Pharmacology, held July 1-7, 1999, in Crete, Greece. Angiogenesis, as a vastly complex biological process, has challenged researchers from all basic scientific disciplines, including pharmacology, biochemistry, physiology, embryology and anatomy. The significance of this phenomenon for the study of disease states has also interested clinicians from a number of specialist fields. This multidisciplinary work reflects the growth of awareness of concepts such as angiogenesis based therapy, the enormous therapeutic and commercial potential of which has attracted major research and investment in recent years. This volume, which aims to bridge the gap between basic and clinical methodology and understanding, presents the most up-to-date developments in this field.
Inflammation and the Microcirculation
Author: D. Neil Granger
Publisher: Morgan & Claypool Publishers
ISBN: 1615041656
Category : Medical
Languages : en
Pages : 99
Book Description
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615041656
Category : Medical
Languages : en
Pages : 99
Book Description
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
The Endothelium
Author: Michel Félétou
Publisher: Morgan & Claypool Publishers
ISBN: 1615041230
Category : Science
Languages : en
Pages : 309
Book Description
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615041230
Category : Science
Languages : en
Pages : 309
Book Description
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Angiogenesis
Author: William D. Figg
Publisher: Springer Science & Business Media
ISBN: 0387715185
Category : Medical
Languages : en
Pages : 592
Book Description
Dr. Judah Folkman is considered the "father of angiogenesis." Because of Folkman's discovery and research, the possibilities of angiogenic therapy have broadened beyond cancer to many noncancerous diseases. Angiogenesis: An Integrative Approach from Science to Medicine is a comprehensive, concise summary of tumor angiogenesis. It is an up-to-date and authoritative reference for the angiogenesis field as it relates to oncology. This book represents the first collection in a volume of which Folkman is co-editor. Folkman has authored nearly 400 original papers and more than 100 book chapters.
Publisher: Springer Science & Business Media
ISBN: 0387715185
Category : Medical
Languages : en
Pages : 592
Book Description
Dr. Judah Folkman is considered the "father of angiogenesis." Because of Folkman's discovery and research, the possibilities of angiogenic therapy have broadened beyond cancer to many noncancerous diseases. Angiogenesis: An Integrative Approach from Science to Medicine is a comprehensive, concise summary of tumor angiogenesis. It is an up-to-date and authoritative reference for the angiogenesis field as it relates to oncology. This book represents the first collection in a volume of which Folkman is co-editor. Folkman has authored nearly 400 original papers and more than 100 book chapters.
Vascular Biology of the Placenta
Author: Yuping Wang
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.
Encyclopedia of Tissue Engineering and Regenerative Medicine
Author:
Publisher: Academic Press
ISBN: 0128137002
Category : Science
Languages : en
Pages : 1436
Book Description
Encyclopedia of Tissue Engineering and Regenerative Medicine, Three Volume Set provides a comprehensive collection of personal overviews on the latest developments and likely future directions in the field. By providing concise expositions on a broad range of topics, this encyclopedia is an excellent resource. Tissue engineering and regenerative medicine are relatively new fields still in their early stages of development, yet they already show great promise. This encyclopedia brings together foundational content and hot topics in both disciplines into a comprehensive resource, allowing deeper interdisciplinary research and conclusions to be drawn from two increasingly connected areas of biomedicine. Provides a ‘one-stop’ resource for access to information written by world-leading scholars in the fields of tissue engineering and regenerative medicine Contains multimedia features, including hyperlinked references and further readings, cross-references and diagrams/images Represents the most comprehensive and exhaustive product on the market on the topic
Publisher: Academic Press
ISBN: 0128137002
Category : Science
Languages : en
Pages : 1436
Book Description
Encyclopedia of Tissue Engineering and Regenerative Medicine, Three Volume Set provides a comprehensive collection of personal overviews on the latest developments and likely future directions in the field. By providing concise expositions on a broad range of topics, this encyclopedia is an excellent resource. Tissue engineering and regenerative medicine are relatively new fields still in their early stages of development, yet they already show great promise. This encyclopedia brings together foundational content and hot topics in both disciplines into a comprehensive resource, allowing deeper interdisciplinary research and conclusions to be drawn from two increasingly connected areas of biomedicine. Provides a ‘one-stop’ resource for access to information written by world-leading scholars in the fields of tissue engineering and regenerative medicine Contains multimedia features, including hyperlinked references and further readings, cross-references and diagrams/images Represents the most comprehensive and exhaustive product on the market on the topic