Author: Lingxin Hao
Publisher: SAGE Publications
ISBN: 1483316904
Category : Social Science
Languages : en
Pages : 142
Book Description
Quantile Regression, the first book of Hao and Naiman′s two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research
Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Quantile Regression
Author: Lingxin Hao
Publisher: SAGE Publications
ISBN: 1483316904
Category : Social Science
Languages : en
Pages : 142
Book Description
Quantile Regression, the first book of Hao and Naiman′s two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research
Publisher: SAGE Publications
ISBN: 1483316904
Category : Social Science
Languages : en
Pages : 142
Book Description
Quantile Regression, the first book of Hao and Naiman′s two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research
Improving Efficiency by Shrinkage
Author: Marvin Gruber
Publisher: Routledge
ISBN: 1351439162
Category : Mathematics
Languages : en
Pages : 648
Book Description
Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains and compares estimators analytically as well as numerically and includes Mathematica and Maple programs used in numerical comparison.;College or university bookshops may order five or more copies at a special student rate, available on request.
Publisher: Routledge
ISBN: 1351439162
Category : Mathematics
Languages : en
Pages : 648
Book Description
Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains and compares estimators analytically as well as numerically and includes Mathematica and Maple programs used in numerical comparison.;College or university bookshops may order five or more copies at a special student rate, available on request.
Modern Methods for Robust Regression
Author: Robert Andersen
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129
Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129
Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Regression Analysis and its Application
Author: Richard F. Gunst
Publisher: Routledge
ISBN: 1351419293
Category : Mathematics
Languages : en
Pages : 426
Book Description
Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.
Publisher: Routledge
ISBN: 1351419293
Category : Mathematics
Languages : en
Pages : 426
Book Description
Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123870151
Category : Mathematics
Languages : en
Pages : 713
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Publisher: Academic Press
ISBN: 0123870151
Category : Mathematics
Languages : en
Pages : 713
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Elements of Survey Sampling
Author: R. Singh
Publisher: Springer Science & Business Media
ISBN: 0792340450
Category : Mathematics
Languages : en
Pages : 412
Book Description
Modern statistics consists of methods which help in drawing inferences about the population under consideration. These populations may actually exist, or could be generated by repeated· experimentation. The medium of drawing inferences about the population is the sample, which is a subset of measurements selected from the population. Each measurement in the sample is used for making inferences about the population. The populations and also the methods of sample selection differ from one field of science to the other. Social scientists use surveys tocollectthe sample information, whereas the physical scientists employ the method of experimentation for obtaining this information. This is because in social sciences the factors that cause variation in the measurements on the study variable for the population units can not be controlled, whereas in physical sciences these factors can be controlled, at least to some extent, through proper experimental design. Several excellent books on sampling theory are available in the market. These books discuss the theory of sample surveys in great depth and detail, and are suited to the postgraduate students majoring in statistics. Research workers in the field of sampling methodology can also make use of these books. However, not many suitable books are available, which can be used by the students and researchers in the fields of economics, social sciences, extension education, agriculture, medical sciences, business management, etc. These students and workers usually conduct sample surveys during their research projects.
Publisher: Springer Science & Business Media
ISBN: 0792340450
Category : Mathematics
Languages : en
Pages : 412
Book Description
Modern statistics consists of methods which help in drawing inferences about the population under consideration. These populations may actually exist, or could be generated by repeated· experimentation. The medium of drawing inferences about the population is the sample, which is a subset of measurements selected from the population. Each measurement in the sample is used for making inferences about the population. The populations and also the methods of sample selection differ from one field of science to the other. Social scientists use surveys tocollectthe sample information, whereas the physical scientists employ the method of experimentation for obtaining this information. This is because in social sciences the factors that cause variation in the measurements on the study variable for the population units can not be controlled, whereas in physical sciences these factors can be controlled, at least to some extent, through proper experimental design. Several excellent books on sampling theory are available in the market. These books discuss the theory of sample surveys in great depth and detail, and are suited to the postgraduate students majoring in statistics. Research workers in the field of sampling methodology can also make use of these books. However, not many suitable books are available, which can be used by the students and researchers in the fields of economics, social sciences, extension education, agriculture, medical sciences, business management, etc. These students and workers usually conduct sample surveys during their research projects.
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
The SAGE Handbook of Regression Analysis and Causal Inference
Author: Henning Best
Publisher: SAGE
ISBN: 1473908353
Category : Social Science
Languages : en
Pages : 425
Book Description
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Publisher: SAGE
ISBN: 1473908353
Category : Social Science
Languages : en
Pages : 425
Book Description
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Quantile Regression
Author: Marilena Furno
Publisher: John Wiley & Sons
ISBN: 1118863593
Category : Mathematics
Languages : en
Pages : 307
Book Description
Contains an overview of several technical topics of Quantile Regression Volume two of Quantile Regression offers an important guide for applied researchers that draws on the same example-based approach adopted for the first volume. The text explores topics including robustness, expectiles, m-quantile, decomposition, time series, elemental sets and linear programming. Graphical representations are widely used to visually introduce several issues, and to illustrate each method. All the topics are treated theoretically and using real data examples. Designed as a practical resource, the book is thorough without getting too technical about the statistical background. The authors cover a wide range of QR models useful in several fields. The software commands in R and Stata are available in the appendixes and featured on the accompanying website. The text: Provides an overview of several technical topics such as robustness of quantile regressions, bootstrap and elemental sets, treatment effect estimators Compares quantile regression with alternative estimators like expectiles, M-estimators and M-quantiles Offers a general introduction to linear programming focusing on the simplex method as solving method for the quantile regression problem Considers time-series issues like non-stationarity, spurious regressions, cointegration, conditional heteroskedasticity via quantile regression Offers an analysis that is both theoretically and practical Presents real data examples and graphical representations to explain the technical issues Written for researchers and students in the fields of statistics, economics, econometrics, social and environmental science, this text offers guide to the theory and application of quantile regression models.
Publisher: John Wiley & Sons
ISBN: 1118863593
Category : Mathematics
Languages : en
Pages : 307
Book Description
Contains an overview of several technical topics of Quantile Regression Volume two of Quantile Regression offers an important guide for applied researchers that draws on the same example-based approach adopted for the first volume. The text explores topics including robustness, expectiles, m-quantile, decomposition, time series, elemental sets and linear programming. Graphical representations are widely used to visually introduce several issues, and to illustrate each method. All the topics are treated theoretically and using real data examples. Designed as a practical resource, the book is thorough without getting too technical about the statistical background. The authors cover a wide range of QR models useful in several fields. The software commands in R and Stata are available in the appendixes and featured on the accompanying website. The text: Provides an overview of several technical topics such as robustness of quantile regressions, bootstrap and elemental sets, treatment effect estimators Compares quantile regression with alternative estimators like expectiles, M-estimators and M-quantiles Offers a general introduction to linear programming focusing on the simplex method as solving method for the quantile regression problem Considers time-series issues like non-stationarity, spurious regressions, cointegration, conditional heteroskedasticity via quantile regression Offers an analysis that is both theoretically and practical Presents real data examples and graphical representations to explain the technical issues Written for researchers and students in the fields of statistics, economics, econometrics, social and environmental science, this text offers guide to the theory and application of quantile regression models.