Computational Geometry of Positive Definite Quadratic Forms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Geometry of Positive Definite Quadratic Forms PDF full book. Access full book title Computational Geometry of Positive Definite Quadratic Forms by Achill Schurmann. Download full books in PDF and EPUB format.

Computational Geometry of Positive Definite Quadratic Forms

Computational Geometry of Positive Definite Quadratic Forms PDF Author: Achill Schurmann
Publisher: American Mathematical Soc.
ISBN: 082184735X
Category : Mathematics
Languages : en
Pages : 183

Book Description
"Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.

Computational Geometry of Positive Definite Quadratic Forms

Computational Geometry of Positive Definite Quadratic Forms PDF Author: Achill Schurmann
Publisher: American Mathematical Soc.
ISBN: 082184735X
Category : Mathematics
Languages : en
Pages : 183

Book Description
"Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.

Quaternary Quadratic Forms

Quaternary Quadratic Forms PDF Author: Gordon L. Nipp
Publisher: Springer Science & Business Media
ISBN: 1461231809
Category : Mathematics
Languages : en
Pages : 160

Book Description
This book of tables includes a reduced representative of each class of. integral positive definite primitive quaternary quadratic forms through discriminant 1732. The classes are grouped into genera; also included are Hasse symbols, the number of automorphs and the level of each such form, and the mass of each genus. An appendix lists p-adic densities and p-adic Jordan splittings for each genus in the tables for p = 2 and for each odd prime p dividing the discriminant. The book is divided into several sections. The first, an introductory section, contains background material, an explanation of the techniques used to generate the information contained in the tables, a description of the format of the tables, some instructions for computer use, examples, and references. The next section contains a printed version of the tables through discriminant 500, included to allow the reader to peruse at least this much without the inconvenience of making his/her own hard copy via the computer. Because of their special interest, we include tables of discriminants 729 and 1729 at the end of this section. Limitations of space preclude publication of more than this in printed form. A printed appendix through discriminant 500 and for discriminants 729 and 1729 follows. The complete tables and appendix through discriminant 1732 are compressed onto the accompanying 3.5 inch disk, formatted for use in a PC-compatible computer and ready for research use particularly when uploaded to a mainframe. Documentation is included in the Introduction.

Rational Quadratic Forms

Rational Quadratic Forms PDF Author: J. W. S. Cassels
Publisher: Courier Dover Publications
ISBN: 0486466701
Category : Mathematics
Languages : en
Pages : 429

Book Description
Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.

Binary Quadratic Forms

Binary Quadratic Forms PDF Author: Duncan A. Buell
Publisher: Springer Science & Business Media
ISBN: 1461245427
Category : Mathematics
Languages : en
Pages : 249

Book Description
The first coherent exposition of the theory of binary quadratic forms was given by Gauss in the Disqnisitiones Arithmeticae. During the nine teenth century, as the theory of ideals and the rudiments of algebraic number theory were developed, it became clear that this theory of bi nary quadratic forms, so elementary and computationally explicit, was indeed just a special case of a much more elega,nt and abstract theory which, unfortunately, is not computationally explicit. In recent years the original theory has been laid aside. Gauss's proofs, which involved brute force computations that can be done in what is essentially a two dimensional vector space, have been dropped in favor of n-dimensional arguments which prove the general theorems of algebraic number the ory. In consequence, this elegant, yet pleasantly simple, theory has been neglected even as some of its results have become extremely useful in certain computations. I find this neglect unfortunate, because binary quadratic forms have two distinct attractions. First, the subject involves explicit computa tion and many of the computer programs can be quite simple. The use of computers in experimenting with examples is both meaningful and enjoyable; one can actually discover interesting results by com puting examples, noticing patterns in the "data," and then proving that the patterns result from the conclusion of some provable theorem.

Binary Quadratic Forms

Binary Quadratic Forms PDF Author: Johannes Buchmann
Publisher: Springer Science & Business Media
ISBN: 3540463682
Category : Mathematics
Languages : en
Pages : 328

Book Description
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.

Number Theory

Number Theory PDF Author: W.A. Coppel
Publisher: Springer Science & Business Media
ISBN: 0387894853
Category : Mathematics
Languages : en
Pages : 620

Book Description
Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.

Primes of the Form X2 + Ny2

Primes of the Form X2 + Ny2 PDF Author: David A. Cox
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 380

Book Description
Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.

Reduction Theory and Arithmetic Groups

Reduction Theory and Arithmetic Groups PDF Author: Joachim Schwermer
Publisher: Cambridge University Press
ISBN: 1108832032
Category : Mathematics
Languages : en
Pages : 375

Book Description
Build a solid foundation in the area of arithmetic groups and explore its inherent geometric and number-theoretical components.

Arithmetic of Quadratic Forms

Arithmetic of Quadratic Forms PDF Author: Yoshiyuki Kitaoka
Publisher: Cambridge University Press
ISBN: 9780521649964
Category : Mathematics
Languages : en
Pages : 292

Book Description
Provides an introduction to quadratic forms.

A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556

Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.