Rearranging Dyson-Schwinger Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rearranging Dyson-Schwinger Equations PDF full book. Access full book title Rearranging Dyson-Schwinger Equations by Karen Yeats. Download full books in PDF and EPUB format.

Rearranging Dyson-Schwinger Equations

Rearranging Dyson-Schwinger Equations PDF Author: Karen Yeats
Publisher: American Mathematical Soc.
ISBN: 0821853066
Category : Mathematics
Languages : en
Pages : 98

Book Description
Dyson-Schwinger equations are integral equations in quantum field theory that describe the Green functions of a theory and mirror the recursive decomposition of Feynman diagrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations describe perturbative quantum field theory. However, they also contain non-perturbative information. Using the Hopf algebra of Feynman graphs the author follows a sequence of reductions to convert the Dyson-Schwinger equations to a new system of differential equations.

Rearranging Dyson-Schwinger Equations

Rearranging Dyson-Schwinger Equations PDF Author: Karen Yeats
Publisher: American Mathematical Soc.
ISBN: 0821853066
Category : Mathematics
Languages : en
Pages : 98

Book Description
Dyson-Schwinger equations are integral equations in quantum field theory that describe the Green functions of a theory and mirror the recursive decomposition of Feynman diagrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations describe perturbative quantum field theory. However, they also contain non-perturbative information. Using the Hopf algebra of Feynman graphs the author follows a sequence of reductions to convert the Dyson-Schwinger equations to a new system of differential equations.

Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory

Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory PDF Author: Paul-Hermann Balduf
Publisher: Springer Nature
ISBN: 3031544463
Category :
Languages : en
Pages : 373

Book Description


A Combinatorial Perspective on Quantum Field Theory

A Combinatorial Perspective on Quantum Field Theory PDF Author: Karen Yeats
Publisher: Springer
ISBN: 3319475517
Category : Science
Languages : en
Pages : 120

Book Description
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.

Feynman Amplitudes, Periods and Motives

Feynman Amplitudes, Periods and Motives PDF Author: Luis Álvarez-Cónsul
Publisher: American Mathematical Soc.
ISBN: 1470422476
Category : Mathematics
Languages : en
Pages : 302

Book Description
This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.

Computer Algebra in Quantum Field Theory

Computer Algebra in Quantum Field Theory PDF Author: Carsten Schneider
Publisher: Springer Science & Business Media
ISBN: 3709116163
Category : Science
Languages : en
Pages : 422

Book Description
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.

On First and Second Order Planar Elliptic Equations with Degeneracies

On First and Second Order Planar Elliptic Equations with Degeneracies PDF Author: Abdelhamid Meziani
Publisher: American Mathematical Soc.
ISBN: 0821853120
Category : Mathematics
Languages : en
Pages : 90

Book Description
This paper deals with elliptic equations in the plane with degeneracies. The equations are generated by a complex vector field that is elliptic everywhere except along a simple closed curve. Kernels for these equations are constructed. Properties of solutions, in a neighborhood of the degeneracy curve, are obtained through integral and series representations. An application to a second order elliptic equation with a punctual singularity is given.

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations PDF Author: Igor Burban
Publisher: American Mathematical Soc.
ISBN: 0821872923
Category : Mathematics
Languages : en
Pages : 144

Book Description
"November 2012, volume 220, number 1035 (third of 4 numbers)."

On Systems of Equations Over Free Partially Commutative Groups

On Systems of Equations Over Free Partially Commutative Groups PDF Author: Montserrat Casals-Ruiz
Publisher: American Mathematical Soc.
ISBN: 0821852582
Category : Mathematics
Languages : en
Pages : 168

Book Description
"Volume 212, number 999 (end of volume)."

A Theory of Generalized Donaldson-Thomas Invariants

A Theory of Generalized Donaldson-Thomas Invariants PDF Author: Dominic D. Joyce
Publisher: American Mathematical Soc.
ISBN: 0821852795
Category : Mathematics
Languages : en
Pages : 212

Book Description
This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.

The Hermitian Two Matrix Model with an Even Quartic Potential

The Hermitian Two Matrix Model with an Even Quartic Potential PDF Author: Maurice Duits
Publisher: American Mathematical Soc.
ISBN: 0821869280
Category : Mathematics
Languages : en
Pages : 118

Book Description
The authors consider the two matrix model with an even quartic potential $W(y)=y^4/4+\alpha y^2/2$ and an even polynomial potential $V(x)$. The main result of the paper is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices $M_1$. The vector equilibrium problem is defined for three measures, with external fields on the first and third measures and an upper constraint on the second measure. The proof is based on a steepest descent analysis of a $4\times4$ matrix valued Riemann-Hilbert problem that characterizes the correlation kernel for the eigenvalues of $M_1$. The authors' results generalize earlier results for the case $\alpha=0$, where the external field on the third measure was not present.