Author: Jean-Marie Basset
Publisher: John Wiley & Sons
ISBN: 3527627103
Category : Science
Languages : en
Pages : 725
Book Description
Covering everything from the basics to recent applications, this monograph represents an advanced overview of the field. Edited by internationally acclaimed experts respected throughout the community, the book is clearly divided into sections on fundamental and applied surface organometallic chemistry. Backed by numerous examples from the recent literature, this is a key reference for all chemists.
Modern Surface Organometallic Chemistry
Author: Jean-Marie Basset
Publisher: John Wiley & Sons
ISBN: 3527627103
Category : Science
Languages : en
Pages : 725
Book Description
Covering everything from the basics to recent applications, this monograph represents an advanced overview of the field. Edited by internationally acclaimed experts respected throughout the community, the book is clearly divided into sections on fundamental and applied surface organometallic chemistry. Backed by numerous examples from the recent literature, this is a key reference for all chemists.
Publisher: John Wiley & Sons
ISBN: 3527627103
Category : Science
Languages : en
Pages : 725
Book Description
Covering everything from the basics to recent applications, this monograph represents an advanced overview of the field. Edited by internationally acclaimed experts respected throughout the community, the book is clearly divided into sections on fundamental and applied surface organometallic chemistry. Backed by numerous examples from the recent literature, this is a key reference for all chemists.
GaN Transistors for Efficient Power Conversion
Author: Alex Lidow
Publisher: John Wiley & Sons
ISBN: 1118844785
Category : Science
Languages : en
Pages : 266
Book Description
Gallium nitride (GaN) is an emerging technology that promises to displace silicon MOSFETs in the next generation of power transistors. As silicon approaches its performance limits, GaN devices offer superior conductivity and switching characteristics, allowing designers to greatly reduce system power losses, size, weight, and cost. This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. With higher-frequency switching capabilities, GaN devices offer the chance to increase efficiency in existing applications such as DC–DC conversion, while opening possibilities for new applications including wireless power transfer and envelope tracking. This book is an essential learning tool and reference guide to enable power conversion engineers to design energy-efficient, smaller and more cost-effective products using GaN transistors. Key features: Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications. Contains useful discussions on device–circuit interactions, which are highly valuable since the new and high performance GaN power transistors require thoughtfully designed drive/control circuits in order to fully achieve their performance potential. Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors – see companion website for further details. A valuable learning resource for professional engineers and systems designers needing to fully understand new devices as well as electrical engineering students.
Publisher: John Wiley & Sons
ISBN: 1118844785
Category : Science
Languages : en
Pages : 266
Book Description
Gallium nitride (GaN) is an emerging technology that promises to displace silicon MOSFETs in the next generation of power transistors. As silicon approaches its performance limits, GaN devices offer superior conductivity and switching characteristics, allowing designers to greatly reduce system power losses, size, weight, and cost. This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. With higher-frequency switching capabilities, GaN devices offer the chance to increase efficiency in existing applications such as DC–DC conversion, while opening possibilities for new applications including wireless power transfer and envelope tracking. This book is an essential learning tool and reference guide to enable power conversion engineers to design energy-efficient, smaller and more cost-effective products using GaN transistors. Key features: Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications. Contains useful discussions on device–circuit interactions, which are highly valuable since the new and high performance GaN power transistors require thoughtfully designed drive/control circuits in order to fully achieve their performance potential. Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors – see companion website for further details. A valuable learning resource for professional engineers and systems designers needing to fully understand new devices as well as electrical engineering students.
Different Types of Field-Effect Transistors
Author: Momčilo Pejović
Publisher: BoD – Books on Demand
ISBN: 9535131753
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
In 1959, Atalla and Kahng at Bell Labs produced the first successful field-effect transistor (FET), which had been long anticipated by other researchers by overcoming the "surface states" that blocked electric fields from penetrating into the semiconductor material. Very quickly, they became the fundamental basis of digital electronic circuits. Up to this point, there are more than 20 different types of field-effect transistors that are incorporated in various applications found in everyday's life. Based on this fact, this book was designed to overview some of the concepts regarding FETs that are currently used as well as some concepts that are still being developed.
Publisher: BoD – Books on Demand
ISBN: 9535131753
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
In 1959, Atalla and Kahng at Bell Labs produced the first successful field-effect transistor (FET), which had been long anticipated by other researchers by overcoming the "surface states" that blocked electric fields from penetrating into the semiconductor material. Very quickly, they became the fundamental basis of digital electronic circuits. Up to this point, there are more than 20 different types of field-effect transistors that are incorporated in various applications found in everyday's life. Based on this fact, this book was designed to overview some of the concepts regarding FETs that are currently used as well as some concepts that are still being developed.
GaN HEMT Modeling Including Trapping Effects Based on Chalmers Model and Pulsed S-Parameter Measurements
Author: Peng Luo
Publisher: Cuvillier Verlag
ISBN: 3736989067
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
GaN HEMTs are regarded as one of the most promising RF power transistor technologies thanks to their high-voltage high-speed characteristics. However, they are still known to be prone to trapping effects, which hamper achievable output power and linearity. Hence, accurately and efficiently modeling the trapping effects is crucial in nonlinear large-signal modeling for GaN HEMTs. This work proposes a trap model based on Chalmers model, an industry standard large-signal model. Instead of a complex nonlinear trap description, only four constant parameters of the proposed trap model need to be determined to accurately describe the significant impacts of the trapping effects, e.g., drain-source current slump, typical kink observed in pulsed I/V characteristics, and degradation of the output power. Moreover, the extraction procedure of the trap model parameters is based on pulsed S-parameter measurements, which allow to freeze traps and isolate the trapping effects from self-heating. The model validity is tested through small- and large-signal model verification procedures. Particularly, it is shown that the use of this trap model enables to dramatically improve the large-signal simulation results.
Publisher: Cuvillier Verlag
ISBN: 3736989067
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
GaN HEMTs are regarded as one of the most promising RF power transistor technologies thanks to their high-voltage high-speed characteristics. However, they are still known to be prone to trapping effects, which hamper achievable output power and linearity. Hence, accurately and efficiently modeling the trapping effects is crucial in nonlinear large-signal modeling for GaN HEMTs. This work proposes a trap model based on Chalmers model, an industry standard large-signal model. Instead of a complex nonlinear trap description, only four constant parameters of the proposed trap model need to be determined to accurately describe the significant impacts of the trapping effects, e.g., drain-source current slump, typical kink observed in pulsed I/V characteristics, and degradation of the output power. Moreover, the extraction procedure of the trap model parameters is based on pulsed S-parameter measurements, which allow to freeze traps and isolate the trapping effects from self-heating. The model validity is tested through small- and large-signal model verification procedures. Particularly, it is shown that the use of this trap model enables to dramatically improve the large-signal simulation results.
AlGaN/GaN-Based Millimeter-Wave High Electron Mobility Transistors
Author: Christian Haupt
Publisher:
ISBN: 9783839603031
Category :
Languages : en
Pages : 175
Book Description
In this work a scaling approach is studied to develop a transistor technology which achieves a high gain as well as a high output power at W-band frequencies and can be applied in the existing fabrication process for MMICs. Following the theoretical scaling rules for field effect transistors lateral and vertical critical dimensions of 100 nm and 10 nm must be achieved, respectively. Therefore various new fabrication processes were developed to enable the new critical dimensions with a sufficient production yield for MMIC fabrication. Transistors fabricated with these methods were evaluated regarding the influence of the scaled geometries on the device characteristics using S-parameter as well as DC-measurements. As a result a transistor technology could be established with a transconductance above 600 mS/mm which is one of the highest reported values for GaN-based HEMTs so far. Furthermore, these transistors feature a very low parasitic capacitance of 0.3 pF/mm and can as a consequence achieve a current-gain cut-off frequency of more than 110 GHz. Besides the high frequency characteristics short channel effects and their influence on the device characteristics were also evaluated. The scaled transistors are dominated by a drain induced barrier lowering (DIBL) and a critical aspect ratio of approximately 14 is necessary to suppress the DIBL-effect in GaN-HEMTs.
Publisher:
ISBN: 9783839603031
Category :
Languages : en
Pages : 175
Book Description
In this work a scaling approach is studied to develop a transistor technology which achieves a high gain as well as a high output power at W-band frequencies and can be applied in the existing fabrication process for MMICs. Following the theoretical scaling rules for field effect transistors lateral and vertical critical dimensions of 100 nm and 10 nm must be achieved, respectively. Therefore various new fabrication processes were developed to enable the new critical dimensions with a sufficient production yield for MMIC fabrication. Transistors fabricated with these methods were evaluated regarding the influence of the scaled geometries on the device characteristics using S-parameter as well as DC-measurements. As a result a transistor technology could be established with a transconductance above 600 mS/mm which is one of the highest reported values for GaN-based HEMTs so far. Furthermore, these transistors feature a very low parasitic capacitance of 0.3 pF/mm and can as a consequence achieve a current-gain cut-off frequency of more than 110 GHz. Besides the high frequency characteristics short channel effects and their influence on the device characteristics were also evaluated. The scaled transistors are dominated by a drain induced barrier lowering (DIBL) and a critical aspect ratio of approximately 14 is necessary to suppress the DIBL-effect in GaN-HEMTs.
Analysis and Optimization of AlGaN/GaN High Electron Mobility Transistors for Microwave Applications
Author: Michael Hosch
Publisher: Cuvillier Verlag
ISBN: 3736938446
Category : Technology & Engineering
Languages : en
Pages : 129
Book Description
This thesis deals with the analysis and optimization of some of the most prominent non-ideal effects in AlGaN/GaN high electron mobility transistors used in microwave applications as well as the optimization of the RF gain. The effect of current collapse, the root cause of leakage currents as well as field-dependent self-heating effects have been investigated by eletrical characterization using well established techniques and have been analyzed using 2-dimensional physical device simulations. It will be shown that the origin of all effects is strongly related to the device surface and some are even competing effects making device optimization a challenge. However, a detailed localization of the regions affecting device performance will be given leading to a better understanding for fabrication process optimization. Finally, I simulation study is conducted giving suggestions for RF gain improvement based on very simple device layout variations.
Publisher: Cuvillier Verlag
ISBN: 3736938446
Category : Technology & Engineering
Languages : en
Pages : 129
Book Description
This thesis deals with the analysis and optimization of some of the most prominent non-ideal effects in AlGaN/GaN high electron mobility transistors used in microwave applications as well as the optimization of the RF gain. The effect of current collapse, the root cause of leakage currents as well as field-dependent self-heating effects have been investigated by eletrical characterization using well established techniques and have been analyzed using 2-dimensional physical device simulations. It will be shown that the origin of all effects is strongly related to the device surface and some are even competing effects making device optimization a challenge. However, a detailed localization of the regions affecting device performance will be given leading to a better understanding for fabrication process optimization. Finally, I simulation study is conducted giving suggestions for RF gain improvement based on very simple device layout variations.
Pseudomorphic HEMT Technology and Applications
Author: R.L. Ross
Publisher: Springer Science & Business Media
ISBN: 9400916302
Category : Science
Languages : en
Pages : 352
Book Description
PHEMT devices and their incorporation into advanced monolithic integrated circuits is the enabling technology for modern microwave/millimeter wave system applications. Although still in its infancy, PHEMT MIMIC technology is already finding applications in both military and commercial systems, including radar, communication and automotive technologies. The successful team in a globally competitive market is one in which the solid-state scientist, circuit designer, system engineer and technical manager are cognizant of those considerations and requirements that influence each other's function. This book provides the reader with a comprehensive review of PHEMT technology, including materials, fabrication and processing, device physics, CAD tools and modelling, monolithic integrated circuit technology and applications. Readers with a broad range of specialities in one or more of the areas of materials, processing, device physics, circuit design, system design and marketing will be introduced quickly to important basic concepts and techniques. The specialist who has specific PHEMT experience will benefit from the broad range of topics covered and the open discussion of practical issues. Finally, the publication offers an additional benefit, in that it presents a broad scope to both the researcher and manager, both of whom must be aware and educated to remain relevant in an ever-expanding technology base.
Publisher: Springer Science & Business Media
ISBN: 9400916302
Category : Science
Languages : en
Pages : 352
Book Description
PHEMT devices and their incorporation into advanced monolithic integrated circuits is the enabling technology for modern microwave/millimeter wave system applications. Although still in its infancy, PHEMT MIMIC technology is already finding applications in both military and commercial systems, including radar, communication and automotive technologies. The successful team in a globally competitive market is one in which the solid-state scientist, circuit designer, system engineer and technical manager are cognizant of those considerations and requirements that influence each other's function. This book provides the reader with a comprehensive review of PHEMT technology, including materials, fabrication and processing, device physics, CAD tools and modelling, monolithic integrated circuit technology and applications. Readers with a broad range of specialities in one or more of the areas of materials, processing, device physics, circuit design, system design and marketing will be introduced quickly to important basic concepts and techniques. The specialist who has specific PHEMT experience will benefit from the broad range of topics covered and the open discussion of practical issues. Finally, the publication offers an additional benefit, in that it presents a broad scope to both the researcher and manager, both of whom must be aware and educated to remain relevant in an ever-expanding technology base.
Intermodulation Distortion in GaN HEMT
Author: Ibrahim Khalil
Publisher: Cuvillier Verlag
ISBN: 3736931883
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
This work treats intermodulation distortion performance of GaN-HEMT high-power transistors. A detailed study on the physical parameters influencing third-order intermodulation distortions is carried out, based on the large-signal model and on physical device simulation. Devices are characterized in terms of linearity by setting up a sophisticated measurement system. Among others, an electronic fuse is used at the drain side to avoid catastrophic failure during measurement. The bias-dependent transconductance characteristic is identified as the dominating source for intermodulation distortion in GaN HEMTs, while drain-source capacitance and access resistances have only minor influence. The corresponding physical parameters governing the transconductance behavior are determined and optimized structures for high linearity are proposed. Besides characterization and analysis of conventional designs, a novel device architecture for very high linearity is presented. Finally, performance of GaN HEMTs within a hybrid amplifier configuration is shown and the combination of high power, high linearity, and low-noise characteristics is highlighted.
Publisher: Cuvillier Verlag
ISBN: 3736931883
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
This work treats intermodulation distortion performance of GaN-HEMT high-power transistors. A detailed study on the physical parameters influencing third-order intermodulation distortions is carried out, based on the large-signal model and on physical device simulation. Devices are characterized in terms of linearity by setting up a sophisticated measurement system. Among others, an electronic fuse is used at the drain side to avoid catastrophic failure during measurement. The bias-dependent transconductance characteristic is identified as the dominating source for intermodulation distortion in GaN HEMTs, while drain-source capacitance and access resistances have only minor influence. The corresponding physical parameters governing the transconductance behavior are determined and optimized structures for high linearity are proposed. Besides characterization and analysis of conventional designs, a novel device architecture for very high linearity is presented. Finally, performance of GaN HEMTs within a hybrid amplifier configuration is shown and the combination of high power, high linearity, and low-noise characteristics is highlighted.
GaN-based Tri-gate High Electron Mobility Transistors
Author: Erdin Ture
Publisher: Fraunhofer Verlag
ISBN: 9783839613412
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The rapidly-growing data throughput rates in a wide range of wireless communication applications are pushing the established semiconductor device technologies to their limits. Considerably higher levels of solid-state output power will therefore be needed to meet the demand in the next generation satellite communications as well as the RADAR systems. Owing to their superior material properties such as high breakdown fields and peak electron velocities, GaN-based high electron mobility transistors (HEMTs) have recently prevailed in high-power systems operating in the microwave frequency bands. On the other hand at the millimetre-wave (MMW) and sub-MMW frequencies, highly-scaled GaN HEMTs are prone to experiencing deteriorated high frequency characteristics which severely limit the high-power performance. In an attempt to overcome this, 3-dimensional GaN HEMT devices featuring the Tri-gate topology are developed in this work, exhibiting enhanced performance in terms of both off- and on-state figures of merit. The demonstrated results promote the great potential of Tri-gate GaN HEMTs for both MMW power amplifier and high-speed logic applications.
Publisher: Fraunhofer Verlag
ISBN: 9783839613412
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The rapidly-growing data throughput rates in a wide range of wireless communication applications are pushing the established semiconductor device technologies to their limits. Considerably higher levels of solid-state output power will therefore be needed to meet the demand in the next generation satellite communications as well as the RADAR systems. Owing to their superior material properties such as high breakdown fields and peak electron velocities, GaN-based high electron mobility transistors (HEMTs) have recently prevailed in high-power systems operating in the microwave frequency bands. On the other hand at the millimetre-wave (MMW) and sub-MMW frequencies, highly-scaled GaN HEMTs are prone to experiencing deteriorated high frequency characteristics which severely limit the high-power performance. In an attempt to overcome this, 3-dimensional GaN HEMT devices featuring the Tri-gate topology are developed in this work, exhibiting enhanced performance in terms of both off- and on-state figures of merit. The demonstrated results promote the great potential of Tri-gate GaN HEMTs for both MMW power amplifier and high-speed logic applications.
GaN Transistor Modeling for RF and Power Electronics
Author: Yogesh Singh Chauhan
Publisher: Elsevier
ISBN: 0323999409
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
GaN Transistor Modeling for RF and Power Electronics: Using The ASM-GaN-HEMT Model covers all aspects of characterization and modeling of GaN transistors for both RF and Power electronics applications. Chapters cover an in-depth analysis of the industry standard compact model ASM-HEMT for GaN transistors. The book details the core surface-potential calculations and a variety of real device effects, including trapping, self-heating, field plate effects, and more to replicate realistic device behavior. The authors also include chapters on step-by-step parameter extraction procedures for the ASM-HEMT model and benchmark test results. GaN is the fastest emerging technology for RF circuits as well as power electronics. This technology is going to grow at an exponential rate over the next decade. This book is envisioned to serve as an excellent reference for the emerging GaN technology, especially for circuit designers, materials science specialists, device engineers and academic researchers and students. - Provides an overview of the operation and physics of GaN-based transistors - Features in-depth description (by the developers of the model) of all aspects of the industry standard ASM-HEMT model for GaN circuits - Details parameter extraction of GaN devices and measurement data requirements for GaN model extraction
Publisher: Elsevier
ISBN: 0323999409
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
GaN Transistor Modeling for RF and Power Electronics: Using The ASM-GaN-HEMT Model covers all aspects of characterization and modeling of GaN transistors for both RF and Power electronics applications. Chapters cover an in-depth analysis of the industry standard compact model ASM-HEMT for GaN transistors. The book details the core surface-potential calculations and a variety of real device effects, including trapping, self-heating, field plate effects, and more to replicate realistic device behavior. The authors also include chapters on step-by-step parameter extraction procedures for the ASM-HEMT model and benchmark test results. GaN is the fastest emerging technology for RF circuits as well as power electronics. This technology is going to grow at an exponential rate over the next decade. This book is envisioned to serve as an excellent reference for the emerging GaN technology, especially for circuit designers, materials science specialists, device engineers and academic researchers and students. - Provides an overview of the operation and physics of GaN-based transistors - Features in-depth description (by the developers of the model) of all aspects of the industry standard ASM-HEMT model for GaN circuits - Details parameter extraction of GaN devices and measurement data requirements for GaN model extraction