Readout Electronics of Superconducting Nanowire Single Photon Detectors

Readout Electronics of Superconducting Nanowire Single Photon Detectors PDF Author: Edward Benjamine Ramirez
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 0

Book Description
In recent years, space missions such as, the Cassini spacecraft, the Juno spacecraft, and the Curiosity rover mission have helped form a better understanding of our solar system. Often times, space missions try to tackle big questions, for example, "Is there life on Mars?". Thus, space exploration is at the forefront in helping humanity understand the origins of human life. Recently, water was found on Mars, which hadn't been known before. Commonly, communication from space missions have been facilitated by radio frequency (RF) technologies, which impact the design of the spacecraft. Engineers and scientists have to cleverly design a spacecraft with an antenna, which can be heavy and may require a lot power to operate. Thus, the quest to facilitate a new means of communication between a spacecraft and ground terminals is something of ongoing interest. Recently, advancements in laser communication technologies has paved the way to help facilitate a new means of communication. Free space optical communications is a technology with relies on photons, the quantum of light, to both send and receive data via lasers. The recent NASA Lunar Laser Communication Demonstration (LLCD) mission showcased that laser communications has the potential to outperform state of the art RF communication technologies, by providing higher data rates, lower weight requirements and lower power requirements. Unlike the highest fidelity RF technologies, free space optical communications doesn't negatively affect the design of a spacecraft and uses a different portion of the electromagnetic spectrum, the near-infrared. The backbone to the LLCD technology is governed by superconducting nanowire single photon detectors (SNSPDs) at the ground receiver. First introduced in 2001, SNSPDs are single photon detectors which operate in the near-infrared electromagnetic spectrum and are amongst the highest fidelity single photon detectors. SNSPDs exhibit attractive performance metrics such as, high count rates, low dark counts, high efficiency and low jitter, which have outperformed other single photon detectors. However, the readout electronics play a huge role in contributing to electrical jitter, which has a negative effect on the detector performance. Electrical jitter is noise which arises due to electronic parts. Various detectors have been engineered, from increasing the width of detectors and increasing the kinetic inductance of the detectors. Thus, the aim is to find a correlation between the latching current and kinetic inductance, as these parameters effect the performance of Molybedum Silicide (MoSi) single photon detectors. Once this correlation is understood, the next goal would be to optimize the readout electronics to eliminate the latching effect, where we hope is to study new physics.

Technology and readout for scaling up superconducting nanowire single-photon detectors

Technology and readout for scaling up superconducting nanowire single-photon detectors PDF Author: Knehr, Emanuel Marius
Publisher: KIT Scientific Publishing
ISBN: 3731512564
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
This work presents three advances to scale SNSPDs from few-pixel devices to large detector arrays: atomic layer deposition for the fabrication of uniform superconducting niobium nitride films of few-nanometer thickness, a frequency-multiplexing scheme to operate multiple detectors with a reduced number of lines, and the integration of SNSPDs with free-form polymer structures to achieve efficient optical coupling onto the active area of the detectors.

Real-time imaging systems for superconducting nanowire single-photon detector arrays

Real-time imaging systems for superconducting nanowire single-photon detector arrays PDF Author: Hofherr, Matthias
Publisher: KIT Scientific Publishing
ISBN: 3731502291
Category : Technology & Engineering
Languages : en
Pages : 216

Book Description
Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark count rates and low jitter times. This thesis improves the understanding of the detection mechanism of SNSPDs and intodruces new and promising multi-pixel readout concepts.

Single-Photon Generation and Detection

Single-Photon Generation and Detection PDF Author: Karl K. Berggren
Publisher: Elsevier Inc. Chapters
ISBN: 0128058056
Category : Science
Languages : en
Pages : 45

Book Description
Superconducting materials provide a unique opportunity for single-photon detectors. The combination of the strong non-linearity present in the superconducting-metal transition and in Josephson junctions; the unique electrical property of zero resistance; the fast relaxation processes present in many superconducting materials; and the easily engineered optical absorptance of metals results in a system that can be adapted to many photo-detection requirements. As a result of these material features, a variety of detector families have emerged in recent years based on superconducting nanowires, tunnel junctions, weak thermal links, and kinetic-inductive resonators. The detectors variously provide high speed single-photon detection; high-sensitivity in the infrared, optical, UV, or even x-ray wavelengths; and high efficiency. The resulting applications include quantum and classical high-data-rate communication, biological imaging, LIDAR, and VLSI circuit evaluation among others.

Superconducting Nanowire Single-Photon Detectors for Quantum Photonic Integrated Circuits on GaAs

Superconducting Nanowire Single-Photon Detectors for Quantum Photonic Integrated Circuits on GaAs PDF Author: Schmidt, Wolfgang-Gustav Ekkehart
Publisher: KIT Scientific Publishing
ISBN: 3731509806
Category : Science
Languages : en
Pages : 240

Book Description


Designing and Implementing a Readout Strategy for Superconducting Single Photon Detectors

Designing and Implementing a Readout Strategy for Superconducting Single Photon Detectors PDF Author: Charles Henry Herder (III.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Book Description
Introduction: Photon detection is an integral part of experimental physics, high-speed communication, as well as many other high-tech disciplines. In the realm of communication, unmanned spacecraft are travelling extreme distances, and ground stations need more and more sensitive and selective detectors to maintain a reasonable data rate.[10] In the realm of computing, some of the most promising new forms of quantum computing require consistent and efficient optical detection of single entangled photons.[27] Due to projects like these, demands are increasing for ever more efficient detectors with higher count rates. The Superconducting Nanowire Single-Photon Detector (SNSPD) is one of the most promising new technologies in this field, being capable of counting photons as faster than 100MHz and with efficiencies around 50%. Currently, the leading competition is from the geiger-mode avalanche photodiode, which is capable of ~20- 70% efficiency at a ~5MHz count rate depending on photon energy. In spite of these advantages, the SNSPD is still a brand-new technology and as a result they do not have the same support hardware support as other detectors. As such, SNSPD's are much more difficult to integrate into an existing an experiment. Because of this difficulty, SNSPD's have not been deployed extensively for research or industrial applications. The signal analysis chain that is connected to this detector is one of the key choke points. Each detector count produces a 0.1 mV, 10 nS wide pulse with a maximum count frequency on the order of 100MHz. Currently, this signal is processed outside of the cryostat with a series of RF amplifiers and a high-speed counter. This design works for detector prototyping, but poses a series of problems with actual design implementation. Most importantly, it prevents our design from being scalable. Even though we can fabricate thousands of detectors on a single wafer, it would be extremely difficult to place that many RF lines without crosstalk or other interference. The purpose of this thesis is to build a more robust and scalable readout technology for SNSPDs. First, we will develop intermediate technologies that improve upon current readout technology and will be necessary to develop the final goal. Ultimately, we plan to build circuitry on-chip that will first convert each detector's analog signal to a digital signal and then condense the data from each detector into an externally clocked, single-bit output indicating the presence or absence of a photon at any detector. This will allow simultaneous readout of a large number of detectors on a single wafer. Additionally, our cryogenic will decrease the noise observed by the detector, as the amplifier is no longer operating at room temperature. Finally, our readout will provide a simple hardware API to be interfaced to a computer or embedded processing unit. The catch to this development process is that the entire system must operate at 4.2K or below. As such, one must either use HEMT CMOS or Rapid Single-Flux- Quantum (RSFQ) logic. HEMT CMOS is better suited to analog amplification of the output signal, while RSFQ circuitry is better suited to the construction of the SNSPD interface and digital logic. RSFQ circuitry is better suited as an input stage because input amplification with CMOS is difficult, as one must operate in the linear regime of a HEMT. This requires on the order of 1 mA at 1.8 V minimum, which results in approximately 2 mW per stage. This is to be compared against RSFQ comparators which utilize approximately 0.5 mA at almost no voltage, resulting in muW of dissipation per stage. Given that we are hoping to produce a large number of SNSPD input stages, RSFQ is clearly a better choice. However, we only have a small number of output signals from the cryostat, so it is much more reasonable to use CMOS, as we can attain larger signal amplitudes.

Development of Superconducting Nanowire Single Photon Detector Technologies for Advanced Applications

Development of Superconducting Nanowire Single Photon Detector Technologies for Advanced Applications PDF Author: Edward Schroeder (Ph.D.)
Publisher:
ISBN:
Category : Detectors
Languages : en
Pages : 173

Book Description
Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is $\Delta_0 \approx 1.1$meV and that the density of states at the Fermi energy is $N_0 \sim 10^{10}$/eV/$\mu$m$^3$. We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of $\Gamma_{KID} = 150~$photons/s/mA in a critically biased KID mode and a photon count rate of $\Gamma_{SPD} = 10^6~$photons/s/mA in SPD mode. This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of $>5$MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.

Superconducting Devices in Quantum Optics

Superconducting Devices in Quantum Optics PDF Author: Robert Hadfield
Publisher: Springer
ISBN: 3319240919
Category : Computers
Languages : en
Pages : 256

Book Description
This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. The new field of quantum acoustics allows the state of a superconducting qubit to be transmitted as a phonon excitation. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.

Nuclear Electronics

Nuclear Electronics PDF Author: Vladimir Polushkin
Publisher: John Wiley & Sons
ISBN: 0470857684
Category : Technology & Engineering
Languages : en
Pages : 402

Book Description
With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

Single-Photon Generation and Detection

Single-Photon Generation and Detection PDF Author:
Publisher: Academic Press
ISBN: 0123876966
Category : Science
Languages : en
Pages : 593

Book Description
Single-photon generation and detection is at the forefront of modern optical physics research. This book is intended to provide a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared. The use of single photons, produced on demand with well-defined quantum properties, offers an unprecedented set of capabilities that are central to the new area of quantum information and are of revolutionary importance in areas that range from the traditional, such as high sensitivity detection for astronomy, remote sensing, and medical diagnostics, to the exotic, such as secretive surveillance and very long communication links for data transmission on interplanetary missions. The goal of this volume is to provide researchers with a comprehensive overview of the technology and techniques that are available to enable them to better design an experimental plan for its intended purpose. The book will be broken into chapters focused specifically on the development and capabilities of the available detectors and sources to allow a comparative understanding to be developed by the reader along with and idea of how the field is progressing and what can be expected in the near future. Along with this technology, we will include chapters devoted to the applications of this technology, which is in fact much of the driver for its development. This is set to become the go-to reference for this field. - Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques - Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency - Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source