Ten Lectures on Random Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ten Lectures on Random Media PDF full book. Access full book title Ten Lectures on Random Media by Erwin Bolthausen. Download full books in PDF and EPUB format.

Ten Lectures on Random Media

Ten Lectures on Random Media PDF Author: Erwin Bolthausen
Publisher: Birkhäuser
ISBN: 3034881592
Category : Mathematics
Languages : en
Pages : 120

Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.

Ten Lectures on Random Media

Ten Lectures on Random Media PDF Author: Erwin Bolthausen
Publisher: Birkhäuser
ISBN: 3034881592
Category : Mathematics
Languages : en
Pages : 120

Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.

Brownian Motion, Obstacles and Random Media

Brownian Motion, Obstacles and Random Media PDF Author: Alain-Sol Sznitman
Publisher: Springer Science & Business Media
ISBN: 3662112817
Category : Mathematics
Languages : en
Pages : 366

Book Description
This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.

Random Media

Random Media PDF Author: George Papanicolaou
Publisher: Springer Science & Business Media
ISBN: 1461387256
Category : Mathematics
Languages : en
Pages : 322

Book Description
This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.

Wave Propagation and Time Reversal in Randomly Layered Media

Wave Propagation and Time Reversal in Randomly Layered Media PDF Author: Jean-Pierre Fouque
Publisher: Springer Science & Business Media
ISBN: 0387498087
Category : Science
Languages : en
Pages : 623

Book Description
The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.

Random Walks on Disordered Media and their Scaling Limits

Random Walks on Disordered Media and their Scaling Limits PDF Author: Takashi Kumagai
Publisher: Springer
ISBN: 331903152X
Category : Mathematics
Languages : en
Pages : 155

Book Description
In these lecture notes, we will analyze the behavior of random walk on disordered media by means of both probabilistic and analytic methods, and will study the scaling limits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media. The first few chapters of the notes can be used as an introduction to discrete potential theory. Recently, there has been significant progress on the theory of random walk on disordered media such as fractals and random media. Random walk on a percolation cluster(‘the ant in the labyrinth’)is one of the typical examples. In 1986, H. Kesten showed the anomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes.

Quantum Mathematics I

Quantum Mathematics I PDF Author: Michele Correggi
Publisher: Springer Nature
ISBN: 9819958946
Category : Science
Languages : en
Pages : 355

Book Description
This book is the first volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to semiclassical analysis, quantum field theory, Schrödinger and Dirac operators and open quantum systems

Directed Polymers in Random Environments

Directed Polymers in Random Environments PDF Author: Francis Comets
Publisher: Springer
ISBN: 3319504878
Category : Mathematics
Languages : en
Pages : 210

Book Description
Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main questionis: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed?This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students.

Nonlinear Stochastic PDEs

Nonlinear Stochastic PDEs PDF Author: Tadahisa Funaki
Publisher: Springer Science & Business Media
ISBN: 1461384680
Category : Mathematics
Languages : en
Pages : 319

Book Description
This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.

Stochastic Modelling in Physical Oceanography

Stochastic Modelling in Physical Oceanography PDF Author: Robert Adler
Publisher: Springer Science & Business Media
ISBN: 1461224306
Category : Mathematics
Languages : en
Pages : 473

Book Description
The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.

Spectral Theory of Random Schrödinger Operators

Spectral Theory of Random Schrödinger Operators PDF Author: R. Carmona
Publisher: Springer Science & Business Media
ISBN: 1461244889
Category : Mathematics
Languages : en
Pages : 611

Book Description
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.