Ramified Surfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ramified Surfaces PDF full book. Access full book title Ramified Surfaces by Michael Friedman. Download full books in PDF and EPUB format.

Ramified Surfaces

Ramified Surfaces PDF Author: Michael Friedman
Publisher: Springer Nature
ISBN: 3031057201
Category : Mathematics
Languages : en
Pages : 258

Book Description
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon’s program of braid monodromy factorization. By focusing on how the research on one specific curve changed during the 20th century, the author provides insights concerning the dynamics of epistemic objects and configurations of mathematical research. It is in this sense that the book offers to take the branch curve as a cross-section through the history of algebraic geometry of the 20th century, considering this curve as an intersection of several research approaches and methods. Researchers in the history of science and of mathematics as well as mathematicians will certainly find this book interesting and appealing, contributing to the growing research on the history of algebraic geometry and its changing images.

Ramified Surfaces

Ramified Surfaces PDF Author: Michael Friedman
Publisher: Springer Nature
ISBN: 3031057201
Category : Mathematics
Languages : en
Pages : 258

Book Description
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon’s program of braid monodromy factorization. By focusing on how the research on one specific curve changed during the 20th century, the author provides insights concerning the dynamics of epistemic objects and configurations of mathematical research. It is in this sense that the book offers to take the branch curve as a cross-section through the history of algebraic geometry of the 20th century, considering this curve as an intersection of several research approaches and methods. Researchers in the history of science and of mathematics as well as mathematicians will certainly find this book interesting and appealing, contributing to the growing research on the history of algebraic geometry and its changing images.

Galois Theory, Coverings, and Riemann Surfaces

Galois Theory, Coverings, and Riemann Surfaces PDF Author: Askold Khovanskii
Publisher: Springer Science & Business Media
ISBN: 3642388418
Category : Mathematics
Languages : en
Pages : 86

Book Description
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.

Algebraic Number Theory

Algebraic Number Theory PDF Author: H. Koch
Publisher: Springer Science & Business Media
ISBN: 3642580955
Category : Mathematics
Languages : en
Pages : 274

Book Description
From the reviews: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Number theory is not easy and quite technical at several places, as the author is able to show in his technically good exposition. The amount of difficult material well exposed gives a survey of quite a lot of good solid classical number theory... Conclusion: for people not already familiar with this field this book is not so easy to read, but for the specialist in number theory this is a useful description of (classical) algebraic number theory." Medelingen van het wiskundig genootschap, 1995

Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves PDF Author: Renzo Cavalieri
Publisher: Cambridge University Press
ISBN: 1316798933
Category : Mathematics
Languages : en
Pages : 197

Book Description
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

Veech Groups and Translation Coverings

Veech Groups and Translation Coverings PDF Author: Finster, Myriam
Publisher: KIT Scientific Publishing
ISBN: 3731501805
Category : Mathematics
Languages : en
Pages : 154

Book Description
A translation surface is obtained by taking plane polygons and gluing their edges by translations. We ask which subgroups of the Veech group of a primitive translation surface can be realised via a translation covering. For many primitive surfaces we prove that partition stabilising congruence subgroups are the Veech group of a covering surface. We also address the coverings via their monodromy groups and present examples of cyclic coverings in short orbits, i.e. with large Veech groups.

Atlas of Seeds and Fruits of Central and East-European Flora

Atlas of Seeds and Fruits of Central and East-European Flora PDF Author: Vít Bojnanský
Publisher: Springer Science & Business Media
ISBN: 1402053614
Category : Science
Languages : en
Pages : 1079

Book Description
The Atlas of Seeds and Fruits of Central and East-European Flora presents nearly 4,800 seed illustrations, supplemented with detailed seed descriptions, brief plant descriptions, and information on the locality and the native source of plants. The Carpathian flora covered here occurs not only in the Carpathian Mountains, but also in large lowlands extending towards the south, north and east and involves introduced and invading flora of more than 7,500 species. This publication is unique on two counts. Its scope extends to an unprecedented number of different plant seeds from a wide-ranging region. Moreover, it presents descriptions in unusual detail.

Dynamics in One Complex Variable

Dynamics in One Complex Variable PDF Author: John Milnor
Publisher: Princeton University Press
ISBN: 1400835534
Category : Mathematics
Languages : en
Pages : 313

Book Description
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.

Intuitive Combinatorial Topology

Intuitive Combinatorial Topology PDF Author: V.G. Boltyanskii
Publisher: Springer Science & Business Media
ISBN: 9780387951140
Category : Mathematics
Languages : en
Pages : 160

Book Description
Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.

Analytic Functions

Analytic Functions PDF Author: Rolf Nevanlinna
Publisher: Springer
ISBN: 3642855903
Category : Mathematics
Languages : en
Pages : 383

Book Description
The present monograph on analytic functions coincides to a lar[extent with the presentation of the modern theory of single-value analytic functions given in my earlier works "Le theoreme de Picarc Borel et la theorie des fonctions meromorphes" (Paris: Gauthier-Villar 1929) and "Eindeutige analytische Funktionen" (Die Grundlehren dt mathematischen Wissenschaften in Einzeldarstellungen, VoL 46, 1: edition Berlin: Springer 1936, 2nd edition Berlin-Gottingen-Heidelberg Springer 1953). In these presentations I have strived to make the individual result and their proofs readily understandable and to treat them in the ligh of certain guiding principles in a unified way. A decisive step in thi direction within the theory of entire and meromorphic functions consiste- in replacing the classical representation of these functions through ca nonical products with more general tools from the potential theor (Green's formula and especially the Poisson-Jensen formula). On thi foundation it was possible to introduce the quantities (the characteristic the proximity and the counting functions) which are definitive for th

Contributions to the Theory of Riemann Surfaces

Contributions to the Theory of Riemann Surfaces PDF Author: Lars Valerian Ahlfors
Publisher:
ISBN:
Category : Riemann surfaces
Languages : en
Pages : 282

Book Description