Radiative Divertor Plasmas with Convection in DIII-D. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Radiative Divertor Plasmas with Convection in DIII-D. PDF full book. Access full book title Radiative Divertor Plasmas with Convection in DIII-D. by . Download full books in PDF and EPUB format.

Radiative Divertor Plasmas with Convection in DIII-D.

Radiative Divertor Plasmas with Convection in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Book Description
The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

Radiative Divertor Plasmas with Convection in DIII-D.

Radiative Divertor Plasmas with Convection in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Book Description
The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

Results from the DIII-D Scientific Research Program

Results from the DIII-D Scientific Research Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The DIII-D research program is aimed at developing the scientific basis for advanced modes of operation which can enhance the commercial attractiveness of the tokamak as an energy producing system. Features that improve the attractiveness of the tokamak as a fusion power plant include: high power density (which demands high[beta]), high ignition margin (high energy confinement time), and steady state operation with low recirculating power (high bootstrap fraction), as well as adequate divertor heat removal, particle and impurity control. This set of requirements emphasizes that the approach to improved performance must be an integrated approach, optimizing the plasma from the core, through the plasma edge and into the divertor. The authors have produced high performance ELMing H-mode plasmas with[beta][sub N] H[sub 98y][approximately] 6 for 5[tau][sub E] ([approximately]1 s) and demonstrated that core transport barriers can be sustained for the length of the 5-s neutral beam pulse in L-mode plasmas. They have demonstrated off-axis electron cyclotron current drive for the first time in a tokamak, discovering an efficiency above theoretical expectations. Edge stability studies have shown that the H-mode edge pressure gradient is not limited by ballooning modes; the self-consistent bootstrap provides second stable regime access. Divertor experiments have provided a new understanding of convection and recombination in radiative divertors and have produced enhanced divertor radiation with scrape off layer plasma flows and impurity enrichment.

Divertor E X B Plasma Convection in DIII-D.

Divertor E X B Plasma Convection in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Extensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for standard (ion VB{sub T} drift toward divertor X-point) and reversed B{sub T} directions; for low (L) and high (H) confinement modes; and for partially detached divertor mode. The data are consistent with recent computational modeling identifying E x B{sub T} circulation, due to potentials sustained by plasma gradients, as the main cause of divertor plasma sensitivity to B{sub T} direction.

Valojuova

Valojuova PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64

Book Description


Engineering Design of a Radiative Divertor for DIII-D.

Engineering Design of a Radiative Divertor for DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
A new divertor configuration is being developed for the DIII-D tokamak. This divertor will operate in the radiative mode. Experiments and modeling form the basis for the new design. The Radiative Divertor reduces the heat flux on the divertor plates by dispersing the power with radiation in the divertor region. In addition, the Radiative Divertor structure will allow density control in plasma shapes required for advanced tokamak operation. The divertor structure allows for operation in either double-null or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. An upgrade to the DIII-D cryogenic system is part of this project. The increased capabilities of the cryogenic system will allow delivery of liquid helium and nitrogen to the three new cryopumps. The Radiative Divertor design is very flexible, and will allow physics studies of the effects of slot width and length. Radiative Divertor diagnostics are being designed in parallel to provide comprehensive measurements for diagnosing the divertor. The Radiative divertor installation is scheduled for late 1996. Engineering experience gained in the DIII-D Advanced Divertor program form a foundation for the design work on the Radiative Divertor.

Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D.

Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D. PDF Author: S. Allen
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
Excessive thermal power loading on the divertor structures presents a design difficulty for future-generation, high powered tokamaks. This difficulty may be mitigated by ''seeding'' the divertor with impurities which radiate a significant fraction of the power upstream of the divertor targets. For this ''radiating divertor'' concept to be practical, however, the confinement and stability of the plasma cannot be compromised by excessive leakage of the seeded impurities into the core plasma. One proposed way of reducing impurity influx is to enhance the directed scrape-off layer (SOL) flow of deuterium ions toward the divertor [1-5]. We report here on the successful application of the radiating divertor scenario to high performance plasma operation in a DIII-D ''hybrid'' H-mode regime. The ''hybrid'' regime [6,7] has many features in common with conventional ELMing H-mode regimes, such as high confinement, e.g., H{sub ITER89P}> 2, where H{sub ITER89P} is the energy confinement normalized to the 1989 ITER L-mode scaling [8]. The main difference is the absence of sawtooth activity in the hybrid. Argon was selected as the seeded impurity for this experiment because argon radiates effectively at both the divertor and pedestal temperatures found in DIII-D hybrid H-mode operation and has a relatively short ionization mean free path. Carbon is also present as the dominant intrinsic impurity in DIII-D discharges. The geometry of this experiment is shown in Fig. 1. A double-null cross-sectional shape was biased upward (dRsep = +1.0 cm). To increase the deuterium ion flow toward the divertor at the top of the vessel, deuterium gas was introduced near the bottom. Argon was injected directly into the private flux region (PFR) of the upper divertor. In-vessel pumping of deuterium and argon was done by cryopumps located in the two upper divertor plenums, shown in cross-hatching [9]. The upper divertor, which we hereafter will simply refer to as the ''divertor'', is the region lying above the dashed line in Fig. 1, and is relatively ''closed''.

Comprehensive 2D Measurements of Radiative Divertor Plasmas in DIII-D.

Comprehensive 2D Measurements of Radiative Divertor Plasmas in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R, Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D[alpha] emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L[alpha] and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

Radiative and SOL Experiments in Open and Baffled Divertors on DIII-D.

Radiative and SOL Experiments in Open and Baffled Divertors on DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description
The authors present recent progress towards an understanding of the physical processes in the divertor and scrape-off-layer (SOL) plasmas in DIII-D. This has been made possible by a combination of new diagnostics, improved computational models, and changes in divertor geometry. They have focused primarily on ELMing H-mode discharges. The physics of Partially Detached Divertor (PDD) plasmas, with divertor heat flux reduction by divertor radiation enhancement using D2 puffing, has been studied in 2-D, and a model of the heat and particle transport has been developed that includes conduction, convection, ionization, recombination, and flows. Plasma and impurity particle flows have been measured with Mach probes and spectroscopy and these flows have been compared with the UEDGE model. The model now includes self-consistent calculations of carbon impurities. Impurity radiation has been increased in the divertor and SOL with puff and pump techniques using SOL D2 puffing, divertor cryopumping, and argon puffing. The important physical processes in plasma-wall interactions have been examined with a DiMES probe, plasma characterization near the divertor plate, and the REDEP code. Experiments comparing single-null (SN) plasma operation in baffled and open divertors have demonstrated a change in the edge plasma profiles. These results are consistent with a reduction in the core ionization source calculated with UEDGE. Divertor particle control in ELMing H-mode with pumping and baffling has resulted in reduction in H-mode core densities to n{sub e}/n{sub gw} (almost equal to) 0.25. Divertor particle exhaust and heat flux has been studied as the plasma shape was varied from a lower SN, to a balanced double null (DN), and finally to an upper SN.

A Comprehensive 2-D Divertor Data Set from DIII-D for Edge Theory Validation

A Comprehensive 2-D Divertor Data Set from DIII-D for Edge Theory Validation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
A comprehensive set of experiments has been carried out on the DIII-D tokamak to measure the 2-D (R, Z) structure of the divertor plasma in a systematic way using new diagnostics. Measurements cover the divertor radially from inside the X-point to the outer target plate and vertically from the target plate to above the X-point. Identical, repeatable shots were made, each having radial sweeps of the X-point and divertor strike points, to allow complete plasma and radiation profile measurements. Data have been obtained in ohmic, L-mode, ELMing H-mode, and reversed B{sub T} operation ((nabla)B drift away from the X-point). In addition, complete measurements were made of radiative divertor plasmas with a Partially Detached Divertor (PDD) induced by D2 injection and with a Radiating Mantle induced by Impurity injection (RMI) using neon and nitrogen. The data set includes first observations of the radial and poloidal profiles of the X-point, inner and outer leg plasmas in PDD and RMI radiative divertor operation. Preliminary data analysis shows that intrinsic impurities play a critical role in determining the SOL and divertor conditions.

Divertor Plasma Studies on DIII-D

Divertor Plasma Studies on DIII-D PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 33

Book Description
In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process.