Author: Helmut Satz
Publisher: Springer Science & Business Media
ISBN: 3642835244
Category : Science
Languages : en
Pages : 354
Book Description
From the Editors Preface: "Quark Matter 1987 was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
Quark Matter
Author: Helmut Satz
Publisher: Springer Science & Business Media
ISBN: 3642835244
Category : Science
Languages : en
Pages : 354
Book Description
From the Editors Preface: "Quark Matter 1987 was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
Publisher: Springer Science & Business Media
ISBN: 3642835244
Category : Science
Languages : en
Pages : 354
Book Description
From the Editors Preface: "Quark Matter 1987 was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
Lectures on Quark Matter
Author: W. Plessas
Publisher: Springer
ISBN: 3540457925
Category : Science
Languages : en
Pages : 344
Book Description
This set of lectures deals with the transition from nuclear matter to quark matter. The reader will learn not only about the theory of quark-gluon plasmas but also how they are obtained in the laboratory through heavy-ion collisions or where they can be found in astrophysical objects such as compact stars. The book fills a gap between well-known textbook material and the research literature and is thus perfectly suited for postgraduate students who wish to enter this field, for lecturers looking for advanced material for their courses and for scientists in search of a modern source of reference on these topics.
Publisher: Springer
ISBN: 3540457925
Category : Science
Languages : en
Pages : 344
Book Description
This set of lectures deals with the transition from nuclear matter to quark matter. The reader will learn not only about the theory of quark-gluon plasmas but also how they are obtained in the laboratory through heavy-ion collisions or where they can be found in astrophysical objects such as compact stars. The book fills a gap between well-known textbook material and the research literature and is thus perfectly suited for postgraduate students who wish to enter this field, for lecturers looking for advanced material for their courses and for scientists in search of a modern source of reference on these topics.
Quark Matter
Author: Hidezumi Terazawa
Publisher:
ISBN: 9781536141511
Category : Science
Languages : en
Pages : 0
Book Description
The meaning of "quark matter" is twofold: 1) It refers to compound states known as "subquarks" (the most fundamental constituents of matter), with quarks consisting of nuclear matter or "nucleons" (the constituents of the nucleus), and 2) compound states of quarks that consist of roughly equal numbers of up, down, and strange quarks, and which may be absolutely stable. Recently, both types of quark matter have become very intriguing subjects in physics and astronomy since the recently discovered Higgs boson, which may be taken as a composite object (possibly, a bound state of subquark-antisubquark pairs). Additionally, many recently observed compact stars have been considered "strange stars" (stars consisting of quark matter). In this book, these subjects in physics and astronomy are discussed without requiring readers to comprehend mathematical details. This book consists of three chapters: Chapter One: "Quark Matter and Strange Stars", Chapter Two: "Composites of Subquarks as Quark Matter", and Chapter Three: "Dark Energy, Dark Matter, and Strange Stars". Their contents include the following: In Chapter One, quark matter and strange stars are discussed in detail. In Chapter Two, the unified subquark model of all fundamental particles (quarks, leptons, and gauge and Higgs bosons) and forces (strong, electromagnetic, weak, and gravitational forces) is discussed in detail. In Chapter Three, pregeometry, in which the general theory of relativity for gravity can be derived as an approximate theory at long distances, is briefly reviewed. Furthermore, special and general theories of "inconstancy" in pregeometry in which fundamental physical constants may vary are introduced. Finally, possible solutions to the most puzzling problem in current cosmology of dark energy and dark matter in the universe are presented. Between Chapters One and Two, pictures of Dr. Abdus Salam added, as Dr. Salam was one of the founders of subquark models. Also, between Chapters Two and Three, pictures of Dr. Andrei Sakharov are added, as Dr. Sakharov was the founder of pregeometry.
Publisher:
ISBN: 9781536141511
Category : Science
Languages : en
Pages : 0
Book Description
The meaning of "quark matter" is twofold: 1) It refers to compound states known as "subquarks" (the most fundamental constituents of matter), with quarks consisting of nuclear matter or "nucleons" (the constituents of the nucleus), and 2) compound states of quarks that consist of roughly equal numbers of up, down, and strange quarks, and which may be absolutely stable. Recently, both types of quark matter have become very intriguing subjects in physics and astronomy since the recently discovered Higgs boson, which may be taken as a composite object (possibly, a bound state of subquark-antisubquark pairs). Additionally, many recently observed compact stars have been considered "strange stars" (stars consisting of quark matter). In this book, these subjects in physics and astronomy are discussed without requiring readers to comprehend mathematical details. This book consists of three chapters: Chapter One: "Quark Matter and Strange Stars", Chapter Two: "Composites of Subquarks as Quark Matter", and Chapter Three: "Dark Energy, Dark Matter, and Strange Stars". Their contents include the following: In Chapter One, quark matter and strange stars are discussed in detail. In Chapter Two, the unified subquark model of all fundamental particles (quarks, leptons, and gauge and Higgs bosons) and forces (strong, electromagnetic, weak, and gravitational forces) is discussed in detail. In Chapter Three, pregeometry, in which the general theory of relativity for gravity can be derived as an approximate theory at long distances, is briefly reviewed. Furthermore, special and general theories of "inconstancy" in pregeometry in which fundamental physical constants may vary are introduced. Finally, possible solutions to the most puzzling problem in current cosmology of dark energy and dark matter in the universe are presented. Between Chapters One and Two, pictures of Dr. Abdus Salam added, as Dr. Salam was one of the founders of subquark models. Also, between Chapters Two and Three, pictures of Dr. Andrei Sakharov are added, as Dr. Sakharov was the founder of pregeometry.
Quark Matter ’84
Author: K. Kajantie
Publisher: Springer
ISBN: 3540392602
Category : Science
Languages : en
Pages : 315
Book Description
Publisher: Springer
ISBN: 3540392602
Category : Science
Languages : en
Pages : 315
Book Description
The Quark
Author: Paul F. Kisak
Publisher: Createspace Independent Publishing Platform
ISBN: 9781523293469
Category :
Languages : en
Pages : 302
Book Description
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly observed or found in isolation; they can be found only within hadrons, such as baryons (of which protons and neutrons are examples), and mesons. For this reason, much of what is known about quarks has been drawn from observations of the hadrons themselves. Quarks have various intrinsic properties, including electric charge, mass, color charge and spin. Quarks are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as fundamental forces(electromagnetism, gravitation, strong interaction, and weak interaction), as well as the only known particles whose electric charges are not integer multiples of the elementary charge. There are six types of quarks, known as flavors: up, down, strange, charm, top, and bottom. Up and down quarks have the lowest masses of all quarks. The heavier quarks rapidly change into up and down quarks through a process of particle decay: the transformation from a higher mass state to a lower mass state. Because of this, up and down quarks are generally stable and the most common in the universe, whereas strange, charm, bottom, and top quarks can only be produced in high energy collisions (such as those involving cosmic rays and in particle accelerators). For every quark flavor there is a corresponding type of antiparticle, known as an antiquark, that differs from the quark only in that some of its properties have equal magnitude but opposite sign. This book gives a comprehensive overview of the quark.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781523293469
Category :
Languages : en
Pages : 302
Book Description
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly observed or found in isolation; they can be found only within hadrons, such as baryons (of which protons and neutrons are examples), and mesons. For this reason, much of what is known about quarks has been drawn from observations of the hadrons themselves. Quarks have various intrinsic properties, including electric charge, mass, color charge and spin. Quarks are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as fundamental forces(electromagnetism, gravitation, strong interaction, and weak interaction), as well as the only known particles whose electric charges are not integer multiples of the elementary charge. There are six types of quarks, known as flavors: up, down, strange, charm, top, and bottom. Up and down quarks have the lowest masses of all quarks. The heavier quarks rapidly change into up and down quarks through a process of particle decay: the transformation from a higher mass state to a lower mass state. Because of this, up and down quarks are generally stable and the most common in the universe, whereas strange, charm, bottom, and top quarks can only be produced in high energy collisions (such as those involving cosmic rays and in particle accelerators). For every quark flavor there is a corresponding type of antiparticle, known as an antiquark, that differs from the quark only in that some of its properties have equal magnitude but opposite sign. This book gives a comprehensive overview of the quark.
Quark Matter
Author: Helmut Satz
Publisher: Springer
ISBN: 9783540194507
Category : Science
Languages : en
Pages : 0
Book Description
From the Editors Preface: "Quark Matter 1987 was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
Publisher: Springer
ISBN: 9783540194507
Category : Science
Languages : en
Pages : 0
Book Description
From the Editors Preface: "Quark Matter 1987 was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
Quark-Gluon Plasma
Author: Kohsuke Yagi
Publisher: Cambridge University Press
ISBN: 9780521561082
Category : Science
Languages : en
Pages : 478
Book Description
Quark-Gluon Plasma introduces the primordial matter, composed of two types of elementary particles, created at the time of the Big Bang. During the evolution of the universe, Quark-Gluon Plasma (QGP) undergoes a transition to hadronic matter governed by quantum chromodynamics, the law of strong interactions. After an introduction to gauge theories, various aspects of quantum chromodynamic phase transitions are illustrated in a self-contained manner. The cosmological approach and renormalization group are discussed, as well as the cosmological and astrophysical implications of QGP, on the basis of Einstein's equations. Recent developments towards the formation of QGP in ultrarelativistic heavy ion collisions are also presented in detail. This text is suitable as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. It includes eight appendices and over a hundred exercises.
Publisher: Cambridge University Press
ISBN: 9780521561082
Category : Science
Languages : en
Pages : 478
Book Description
Quark-Gluon Plasma introduces the primordial matter, composed of two types of elementary particles, created at the time of the Big Bang. During the evolution of the universe, Quark-Gluon Plasma (QGP) undergoes a transition to hadronic matter governed by quantum chromodynamics, the law of strong interactions. After an introduction to gauge theories, various aspects of quantum chromodynamic phase transitions are illustrated in a self-contained manner. The cosmological approach and renormalization group are discussed, as well as the cosmological and astrophysical implications of QGP, on the basis of Einstein's equations. Recent developments towards the formation of QGP in ultrarelativistic heavy ion collisions are also presented in detail. This text is suitable as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. It includes eight appendices and over a hundred exercises.
Quark Matter
Author:
Publisher:
ISBN:
Category : Heavy ion collisions
Languages : en
Pages : 1004
Book Description
Publisher:
ISBN:
Category : Heavy ion collisions
Languages : en
Pages : 1004
Book Description
Mesons and Quarks
Author: A. B. Santra
Publisher: Alpha Science Int'l Ltd.
ISBN: 9788173195891
Category : Science
Languages : en
Pages : 362
Book Description
"This monograph "Mesons and Quarks" includes a wide range of topics in the frontier areas of research in the overlapping field of nuclear and particle physics. It discusses various aspects of Quantum Chromodynamics (QCD) at different regimes of energy and density."--BOOK JACKET.
Publisher: Alpha Science Int'l Ltd.
ISBN: 9788173195891
Category : Science
Languages : en
Pages : 362
Book Description
"This monograph "Mesons and Quarks" includes a wide range of topics in the frontier areas of research in the overlapping field of nuclear and particle physics. It discusses various aspects of Quantum Chromodynamics (QCD) at different regimes of energy and density."--BOOK JACKET.
Particle and Nuclear Physics
Author: Amand Faessler
Publisher: Elsevier
ISBN: 1483278409
Category : Science
Languages : en
Pages : 323
Book Description
Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussion then shifts to the principles of slow neutrons and their fundamental interactions, as well as some slow neutron experiments. The final chapter surveys the role of strangeness in the context of dense hadronic matter, including strangeness as a probe of the dynamics of relativistic heavy ion collisions and its importance in astrophysics. This book will prove useful to physicists and allied scientists.
Publisher: Elsevier
ISBN: 1483278409
Category : Science
Languages : en
Pages : 323
Book Description
Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussion then shifts to the principles of slow neutrons and their fundamental interactions, as well as some slow neutron experiments. The final chapter surveys the role of strangeness in the context of dense hadronic matter, including strangeness as a probe of the dynamics of relativistic heavy ion collisions and its importance in astrophysics. This book will prove useful to physicists and allied scientists.