Quantum Simulations of Materials and Biological Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Simulations of Materials and Biological Systems PDF full book. Access full book title Quantum Simulations of Materials and Biological Systems by Jun Zeng. Download full books in PDF and EPUB format.

Quantum Simulations of Materials and Biological Systems

Quantum Simulations of Materials and Biological Systems PDF Author: Jun Zeng
Publisher: Springer Science & Business Media
ISBN: 9400749481
Category : Science
Languages : en
Pages : 203

Book Description
Quantum Simulations of Materials and Biological Systems features contributions from leading world experts in the fields of density functional theory (DFT) and its applications to material and biological systems. The recent developments of correlation functionals, implementations of Time-dependent algorithm into DFTB+ method are presented. The applications of DFT method to large materials and biological systems such as understanding of optical and electronic properties of nanoparticles, X-ray structure refinement of proteins, the catalytic process of enzymes and photochemistry of phytochromes are detailed. In addition, the book reviews the recent developments of methods for protein design and engineering, as well as ligand-based drug design. Some insightful information about the 2011 International Symposium on Computational Sciences is also provided. Quantum Simulations of Materials and Biological Systems is aimed at faculties and researchers in the fields of computational physics, chemistry and biology, as well as at the biotech and pharmaceutical industries.

Quantum Simulations of Materials and Biological Systems

Quantum Simulations of Materials and Biological Systems PDF Author: Jun Zeng
Publisher: Springer Science & Business Media
ISBN: 9400749481
Category : Science
Languages : en
Pages : 203

Book Description
Quantum Simulations of Materials and Biological Systems features contributions from leading world experts in the fields of density functional theory (DFT) and its applications to material and biological systems. The recent developments of correlation functionals, implementations of Time-dependent algorithm into DFTB+ method are presented. The applications of DFT method to large materials and biological systems such as understanding of optical and electronic properties of nanoparticles, X-ray structure refinement of proteins, the catalytic process of enzymes and photochemistry of phytochromes are detailed. In addition, the book reviews the recent developments of methods for protein design and engineering, as well as ligand-based drug design. Some insightful information about the 2011 International Symposium on Computational Sciences is also provided. Quantum Simulations of Materials and Biological Systems is aimed at faculties and researchers in the fields of computational physics, chemistry and biology, as well as at the biotech and pharmaceutical industries.

Computer Simulations in Condensed Matter: From Materials to Chemical Biology

Computer Simulations in Condensed Matter: From Materials to Chemical Biology PDF Author: Mauro Ferrario
Publisher: Springer Science & Business Media
ISBN: 3540352708
Category : Computers
Languages : en
Pages : 717

Book Description
This comprehensive collection of lectures by leading experts in the field introduces and reviews all relevant computer simulation methods and their applications in condensed matter systems. Volume 1 is an in-depth introduction to a vast spectrum of computational techniques for statistical mechanical systems of condensed matter. Volume 2 is a collection of state-of-the-art surveys on numerical experiments carried out for a great number of systems.

Computational Modeling And Simulations Of Biomolecular Systems

Computational Modeling And Simulations Of Biomolecular Systems PDF Author: Benoit Roux
Publisher: World Scientific
ISBN: 9811232776
Category : Computers
Languages : en
Pages : 209

Book Description
This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).

Phonon Thermal Transport in Silicon-Based Nanomaterials

Phonon Thermal Transport in Silicon-Based Nanomaterials PDF Author: Hai-Peng Li
Publisher: Springer
ISBN: 9811326371
Category : Science
Languages : en
Pages : 94

Book Description
In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Combinatorial Optimization Problems: Quantum Computing

Combinatorial Optimization Problems: Quantum Computing PDF Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 775

Book Description
"Combinatorial Optimization Problems: Quantum Computing" is an introductory guide that bridges the gap between combinatorial optimization and quantum computing for absolute beginners. This book unpacks fundamental concepts in optimization and explores how quantum computing can revolutionize the way we approach complex problems. Through clear explanations and relatable examples, readers will gain an understanding of both fields without needing any prior knowledge of quantum mechanics or advanced mathematics. Ideal for those curious about the future of technology, this book serves as a stepping stone into the fascinating world of quantum algorithms and their applications in optimization.

Our Planet Powered by AI

Our Planet Powered by AI PDF Author: Mark Minevich
Publisher: John Wiley & Sons
ISBN: 1394180608
Category : Business & Economics
Languages : en
Pages : 262

Book Description
A hands-on guide to evolving your company with ethical AI along with thought-provoking insights and predictions from a variety of well-known industry leaders In Our Planet Powered by AI, renowned AI strategist and pioneer Mark Minevich delivers an exciting and practical discussion of how to implement groundbreaking artificial intelligence technologies at every level of your organization. You’ll learn to create sustainable, effective competitive advantage by introducing previously unheard-of levels of adaptability, resilience, and innovation into your company. Using real-world case studies from a variety of well-known industry leaders, the author explains the strategic archetypes, technological infrastructures, and cultures of sustainability you’ll need to ensure your firm’s next-level digital transformation takes root. You’ll also discover: How AI can enable new business strategies, models, and ecosystems of innovation and growth How to develop societal impact and powerful organizational benefits with ethical AI implementations that incorporate transparency, fairness, privacy, and reliability What it means to enable all-inclusive artificial intelligence An engaging and hands-on exploration of how to take your firm to new levels of dynamism and growth, Our Planet Powered by AI will earn a place in the libraries of managers, executives, directors, and other business and technology leaders seeking to distinguish their companies in a new age of astonishing technological advancement and fierce competition.

Principles and Applications of Density Functional Theory in Inorganic Chemistry II

Principles and Applications of Density Functional Theory in Inorganic Chemistry II PDF Author: N. Kaltsoyannis
Publisher: Springer
ISBN: 3540409661
Category : Science
Languages : en
Pages : 252

Book Description
It is difficult to overestimate the impact that density functional theory has had on computational quantum chemistry over the last two decades. Indeed, this period has seen it grow from little more than a theoreticalcuriosity to become a central tool in the computational chemist s armoury. Arguably no area of ch- istry has benefited more from the meteoric rise in density functional theory than inorganic chemistry. the ability to obtainreliable results in feasible ti- scales on systems containing heavy elements such as the d and f transition - tals has led to an enormous growth in computational inorganic chemistry. The inorganic chemical literature reflects this growth; it is almost impossible to open a modern inorganic chemistry journal without finding several papers devoted exclusively or in part to density functional theory calculations. The real imp- tance of the rise in density functional theory in inorganic chemistry is undou- edly the much closer synergy between theory and experiment than was p- viously posible. In these volumes, world-leading researchers describe recent developments in the density functional theory and its applications in modern inorganic and b- inorganic chemistry. These articles address key issues key issues in both sol- state and molecular inorganic chemistry, such as spectroscopy, mechanisms, catalysis, bonding and magnetism. The articles in volume I are more focussed on advances in density functional methodogy, while those in Volume II deal more with applications, although this is by no means a rigid distinction.

Principles and Applications of Density Functional Theory in Inorganic Chemistry II

Principles and Applications of Density Functional Theory in Inorganic Chemistry II PDF Author: Nikolas Kaltsoyannis
Publisher: Springer Science & Business Media
ISBN: 9783540218616
Category : Chemistry
Languages : en
Pages : 264

Book Description
E. Clot, O. Eisenstein: Agostic Interactions from a Computational Perspective: One Name, many Interpretations.- Robert J. Deet: Recent Developments in Computational Bioinorganic Chemistry.- E. Ruiz: Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods.- D. Sánches-Portal, P. Ordejón, E. Canadell: Computing the Properties of Materials from First Principles with SIESTA.- F. Corà, M. Alfredsson, G. Mallia, D.S. Middlemiss, W.C. Mackrodt, R. Dovesi, R. Orlando: The Performance of Hybrid Density Functionals in Solid State Chemistry

Quantum Computing

Quantum Computing PDF Author: Rob Botwright
Publisher: Rob Botwright
ISBN: 1839386312
Category : Computers
Languages : en
Pages : 307

Book Description
🌟 Explore the Future with the "Quantum Computing: Computer Science, Physics, and Mathematics" Book Bundle! 🌟 Are you ready to unlock the secrets of quantum computing and delve into the multidisciplinary world of computer science, physics, and mathematics? Look no further! Our exclusive bundle, consisting of four captivating books, is your ticket to the quantum frontier. 📚 Book 1: "Quantum Computing Demystified: A Beginner's Guide" 📚 Are you new to quantum computing? This beginner's guide will unravel the complex concepts and lay the foundation for your quantum journey. Dive into qubits, superposition, and quantum algorithms, and embark on a transformative exploration of quantum computing's limitless possibilities. 📚 Book 2: "Mastering Quantum Computing: A Comprehensive Guide for Intermediate Learners" 📚 Ready to take the next step? This comprehensive guide is tailored for intermediate learners, providing in-depth insights into advanced topics, quantum programming, and algorithm design. Elevate your skills and become a quantum computing virtuoso. 📚 Book 3: "Advanced Quantum Computing: Exploring the Frontiers of Computer Science, Physics, and Mathematics" 📚 Step into the cutting-edge world of quantum computing's frontiers. Delve into quantum error correction, cryptography, and simulations, and discover the complex challenges and captivating possibilities that await at the forefront of this transformative technology. 📚 Book 4: "Quantum Computing: A Multidisciplinary Approach for Experts" 📚 Quantum computing transcends disciplines, and this book proves it. Explore its multifaceted applications in computer science, physics, mathematics, and beyond. Recognize its potential to reshape industries and address global challenges. This book is a must-read for experts and visionaries. ✨ Why Choose This Bundle? ✨ 🚀 Comprehensive Learning: Our bundle offers a 360-degree view of quantum computing, catering to beginners and experts alike. 🎓 Multidisciplinary Insights: Explore the intersections of computer science, physics, mathematics, and quantum computing for innovative perspectives. 💡 Future-Ready: Quantum computing is at the forefront of technology. Equip yourself with the skills and knowledge that will shape the future. 📖 In-Depth Exploration: Dive deep into quantum mechanics, algorithms, error correction, and applications, unraveling the complexities along the way. 🌌 The quantum frontier awaits your exploration. This bundle is your key to unlocking the boundless potential of quantum computing while understanding its multidisciplinary impact. 🌟 Don't miss this opportunity to embark on a transformative journey into the future of technology! 🌟 Secure your "Quantum Computing: Computer Science, Physics, and Mathematics" book bundle today and prepare to be amazed by the endless possibilities of quantum computing. Elevate your skills, expand your knowledge, and become a quantum trailblazer! 🚀 Grab this bundle now and step into the quantum realm, where the future of computing, science, and mathematics converges! 🚀

Energy Transfer Dynamics in Biomaterial Systems

Energy Transfer Dynamics in Biomaterial Systems PDF Author: Irene Burghardt
Publisher: Springer Science & Business Media
ISBN: 3642023061
Category : Science
Languages : en
Pages : 476

Book Description
The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today’s grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature’s 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.