Author: Tim J. Stevens
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages : 721
Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.
Python Programming for Biology
Author: Tim J. Stevens
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages : 721
Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages : 721
Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.
Python for Biologists
Author: Martin Jones
Publisher: Createspace Independent Publishing Platform
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Python for biologists is a complete programming course for beginners that will give you the skills you need to tackle common biological and bioinformatics problems.
Publisher: Createspace Independent Publishing Platform
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Python for biologists is a complete programming course for beginners that will give you the skills you need to tackle common biological and bioinformatics problems.
Computing for Biologists
Author: Ran Libeskind-Hadas
Publisher: Cambridge University Press
ISBN: 1316061337
Category : Science
Languages : en
Pages : 289
Book Description
Computing is revolutionizing the practice of biology. This book, which assumes no prior computing experience, provides students with the tools to write their own Python programs and to understand fundamental concepts in computational biology and bioinformatics. Each major part of the book begins with a compelling biological question, followed by the algorithmic ideas and programming tools necessary to explore it: the origins of pathogenicity are examined using gene finding, the evolutionary history of sex determination systems is studied using sequence alignment, and the origin of modern humans is addressed using phylogenetic methods. In addition to providing general programming skills, this book explores the design of efficient algorithms, simulation, NP-hardness, and the maximum likelihood method, among other key concepts and methods. Easy-to-read and designed to equip students with the skills to write programs for solving a range of biological problems, the book is accompanied by numerous programming exercises, available at www.cs.hmc.edu/CFB.
Publisher: Cambridge University Press
ISBN: 1316061337
Category : Science
Languages : en
Pages : 289
Book Description
Computing is revolutionizing the practice of biology. This book, which assumes no prior computing experience, provides students with the tools to write their own Python programs and to understand fundamental concepts in computational biology and bioinformatics. Each major part of the book begins with a compelling biological question, followed by the algorithmic ideas and programming tools necessary to explore it: the origins of pathogenicity are examined using gene finding, the evolutionary history of sex determination systems is studied using sequence alignment, and the origin of modern humans is addressed using phylogenetic methods. In addition to providing general programming skills, this book explores the design of efficient algorithms, simulation, NP-hardness, and the maximum likelihood method, among other key concepts and methods. Easy-to-read and designed to equip students with the skills to write programs for solving a range of biological problems, the book is accompanied by numerous programming exercises, available at www.cs.hmc.edu/CFB.
Hands on Data Science for Biologists Using Python
Author: Yasha Hasija
Publisher: CRC Press
ISBN: 1000345483
Category : Computers
Languages : en
Pages : 299
Book Description
Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models.
Publisher: CRC Press
ISBN: 1000345483
Category : Computers
Languages : en
Pages : 299
Book Description
Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models.
Bioinformatics Programming Using Python
Author: Mitchell L Model
Publisher: "O'Reilly Media, Inc."
ISBN: 1449382908
Category : Science
Languages : en
Pages : 526
Book Description
Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter
Publisher: "O'Reilly Media, Inc."
ISBN: 1449382908
Category : Science
Languages : en
Pages : 526
Book Description
Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter
Python for the Life Sciences
Author: Alexander Lancaster
Publisher: Apress
ISBN: 1484245237
Category : Computers
Languages : en
Pages : 396
Book Description
Treat yourself to a lively, intuitive, and easy-to-follow introduction to computer programming in Python. The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence and inspiration to start using Python in their own research. Virtually all of the examples in the book are drawn from across a wide spectrum of life science research, from simple biochemical calculations and sequence analysis, to modeling the dynamic interactions of genes and proteins in cells, or the drift of genes in an evolving population. Best of all, Python for the Life Sciences shows you how to implement all of these projects in Python, one of the most popular programming languages for scientific computing. If you are a life scientist interested in learning Python to jump-start your research, this is the book for you. What You'll Learn Write Python scripts to automate your lab calculations Search for important motifs in genome sequences Use object-oriented programming with Python Study mining interaction network data for patterns Review dynamic modeling of biochemical switches Who This Book Is For Life scientists with little or no programming experience, including undergraduate and graduate students, postdoctoral researchers in academia and industry, medical professionals, and teachers/lecturers. “A comprehensive introduction to using Python for computational biology... A lovely book with humor and perspective” -- John Novembre, Associate Professor of Human Genetics, University of Chicago and MacArthur Fellow “Fun, entertaining, witty and darn useful. A magical portal to the big data revolution” -- Sandro Santagata, Assistant Professor in Pathology, Harvard Medical School “Alex and Gordon’s enthusiasm for Python is contagious” -- Glenys Thomson Professor of Integrative Biology, University of California, Berkeley
Publisher: Apress
ISBN: 1484245237
Category : Computers
Languages : en
Pages : 396
Book Description
Treat yourself to a lively, intuitive, and easy-to-follow introduction to computer programming in Python. The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence and inspiration to start using Python in their own research. Virtually all of the examples in the book are drawn from across a wide spectrum of life science research, from simple biochemical calculations and sequence analysis, to modeling the dynamic interactions of genes and proteins in cells, or the drift of genes in an evolving population. Best of all, Python for the Life Sciences shows you how to implement all of these projects in Python, one of the most popular programming languages for scientific computing. If you are a life scientist interested in learning Python to jump-start your research, this is the book for you. What You'll Learn Write Python scripts to automate your lab calculations Search for important motifs in genome sequences Use object-oriented programming with Python Study mining interaction network data for patterns Review dynamic modeling of biochemical switches Who This Book Is For Life scientists with little or no programming experience, including undergraduate and graduate students, postdoctoral researchers in academia and industry, medical professionals, and teachers/lecturers. “A comprehensive introduction to using Python for computational biology... A lovely book with humor and perspective” -- John Novembre, Associate Professor of Human Genetics, University of Chicago and MacArthur Fellow “Fun, entertaining, witty and darn useful. A magical portal to the big data revolution” -- Sandro Santagata, Assistant Professor in Pathology, Harvard Medical School “Alex and Gordon’s enthusiasm for Python is contagious” -- Glenys Thomson Professor of Integrative Biology, University of California, Berkeley
Python for Bioinformatics
Author: Sebastian Bassi
Publisher: CRC Press
ISBN: 1351976958
Category : Mathematics
Languages : en
Pages : 423
Book Description
In today's data driven biology, programming knowledge is essential in turning ideas into testable hypothesis. Based on the author’s extensive experience, Python for Bioinformatics, Second Edition helps biologists get to grips with the basics of software development. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. This new edition is updated throughout to Python 3 and is designed not just to help scientists master the basics, but to do more in less time and in a reproducible way. New developments added in this edition include NoSQL databases, the Anaconda Python distribution, graphical libraries like Bokeh, and the use of Github for collaborative development.
Publisher: CRC Press
ISBN: 1351976958
Category : Mathematics
Languages : en
Pages : 423
Book Description
In today's data driven biology, programming knowledge is essential in turning ideas into testable hypothesis. Based on the author’s extensive experience, Python for Bioinformatics, Second Edition helps biologists get to grips with the basics of software development. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. This new edition is updated throughout to Python 3 and is designed not just to help scientists master the basics, but to do more in less time and in a reproducible way. New developments added in this edition include NoSQL databases, the Anaconda Python distribution, graphical libraries like Bokeh, and the use of Github for collaborative development.
A Primer for Computational Biology
Author: Shawn T. O'Neil
Publisher:
ISBN: 9780870719264
Category : Science
Languages : en
Pages : 0
Book Description
A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the "natural environment" of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful "pipe" operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.
Publisher:
ISBN: 9780870719264
Category : Science
Languages : en
Pages : 0
Book Description
A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the "natural environment" of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful "pipe" operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.
A Primer on Scientific Programming with Python
Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Bioinformatics Programming in Python
Author: Ruediger-Marcus Flaig
Publisher: John Wiley & Sons
ISBN: 3527644903
Category : Medical
Languages : en
Pages : 432
Book Description
This first introductory book designed to train novice programmers is based on a student course taught by the author, and has been optimized for biology students without previous experience in programming. By interspersing theory chapters with numerous small and large programming exercises, the author quickly shows readers how to do their own programming, and throughout uses anecdotes and real-life examples from the biosciences to 'spice up' the text. This practical book thus teaches essential programming skills for life scientists who want -- or need -- to write their own bioinformatics software tools.
Publisher: John Wiley & Sons
ISBN: 3527644903
Category : Medical
Languages : en
Pages : 432
Book Description
This first introductory book designed to train novice programmers is based on a student course taught by the author, and has been optimized for biology students without previous experience in programming. By interspersing theory chapters with numerous small and large programming exercises, the author quickly shows readers how to do their own programming, and throughout uses anecdotes and real-life examples from the biosciences to 'spice up' the text. This practical book thus teaches essential programming skills for life scientists who want -- or need -- to write their own bioinformatics software tools.