Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas PDF full book. Access full book title Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas by Matthew Louis Wisher. Download full books in PDF and EPUB format.

Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas

Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas PDF Author: Matthew Louis Wisher
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Book Description
Experiments in high energy density (HED) plasma physics have become more accessible with the increasing availability of high-intensity pulsed lasers. Extending the experiment parameters to include magnetized HED plasmas requires a field source that can generate fields of order 100 tesla. This dissertation discusses the design and implementation of a pulsed field driver with a designed maximum of 2.2 MA from a 160 kJ capacitor bank. Faraday rotation measurement of 63 T for a 1.0 MA discharge supported Biot-Savart estimates for a single-turn coil with a 1 cm bore. After modification, the field driver generated up to 15 T to magnetize supernova-like spherical blast waves driven by the Texas Petawatt Laser. The presence of the high field suppressed blast wave expansion, and had the additional effect of revealing a cylindrical plasma along the laser axis.

Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas

Pulsed Magnetic Field Generation for Experiments in High Energy Density Plasmas PDF Author: Matthew Louis Wisher
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Book Description
Experiments in high energy density (HED) plasma physics have become more accessible with the increasing availability of high-intensity pulsed lasers. Extending the experiment parameters to include magnetized HED plasmas requires a field source that can generate fields of order 100 tesla. This dissertation discusses the design and implementation of a pulsed field driver with a designed maximum of 2.2 MA from a 160 kJ capacitor bank. Faraday rotation measurement of 63 T for a 1.0 MA discharge supported Biot-Savart estimates for a single-turn coil with a 1 cm bore. After modification, the field driver generated up to 15 T to magnetize supernova-like spherical blast waves driven by the Texas Petawatt Laser. The presence of the high field suppressed blast wave expansion, and had the additional effect of revealing a cylindrical plasma along the laser axis.

Megagauss Field Generation for High-energy-density Plasma Science Experiments

Megagauss Field Generation for High-energy-density Plasma Science Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Book Description
There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

Megagauss Magnetic Field Generation, Its Application to Science and Ultra-high Pulsed-power Technology

Megagauss Magnetic Field Generation, Its Application to Science and Ultra-high Pulsed-power Technology PDF Author: Hans J. Schneider-Muntau
Publisher: World Scientific
ISBN: 9812560165
Category : Science
Languages : en
Pages : 749

Book Description
"Megagauss VIII was held in connection with the conference "Physical Phenomena at High Magnetic Fields - III" (PPHMF-III) in order to encourage and facilitate cross-links between the two scientific communities"--p. xiii.

Investigation of the Compression of Magnetized Plasma and Magnetic Flux

Investigation of the Compression of Magnetized Plasma and Magnetic Flux PDF Author: Dimitry Mikitchuk
Publisher: Springer
ISBN: 3030208559
Category : Science
Languages : en
Pages : 91

Book Description
The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Megagauss Magnetic Field Generation, Its Application To Science And Ultra-high Pulsed-power Technology - Procs Of The Viiith Int'l Conf On Megagauss Magnetic Field Generation And Related Topics

Megagauss Magnetic Field Generation, Its Application To Science And Ultra-high Pulsed-power Technology - Procs Of The Viiith Int'l Conf On Megagauss Magnetic Field Generation And Related Topics PDF Author: Hans J Schneider-muntau
Publisher: World Scientific
ISBN: 9814481971
Category : Science
Languages : en
Pages : 749

Book Description
The generation of megagauss fields for science and technology is an exciting area at the extremes of parameter space, involving the application and controlled handling of extremely high power and energy densities in small volumes and on short time scales. New physical phenomena, technological challenges, and the selection and development of materials, together create a unique potential and synergy resulting in fascinating discoveries and achievements.This book is a collection of the contributions of an international conference, which assembled the leading scientists and engineers worldwide working on the generation and use of the strongest magnetic fields possible. Other research activities include generators that employ explosives to create ultra-high pulsed power for different applications, such as megavolt or radiation sources. Additional topics are the generation of plasmas and magnetized plasmas for fusion, imploding liners, rail guns, etc.

Magnetic Field Generation and Stability in High-energy Density Plasmas

Magnetic Field Generation and Stability in High-energy Density Plasmas PDF Author: Peter Edward Valz Carruth
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


High Energy Density Laboratory Astrophysics

High Energy Density Laboratory Astrophysics PDF Author: Sergey V. Lebedev
Publisher: Springer Science & Business Media
ISBN: 1402060556
Category : Science
Languages : en
Pages : 321

Book Description
This work will be of interest to a wide range of academics. It provides a comprehensive round-up of the proceedings and papers delivered at the 2006 Conference on High Energy Density Laboratory Astrophysics, held at Rice University in Houston, Texas, USA. The contributions come from scientists interested in this emerging field. They discuss the progress in topics covering everything from stellar evolution and envelopes, to opacities, radiation transport and x-ray photoionized plasmas.

High-Energy-Density Physics

High-Energy-Density Physics PDF Author: R Paul Drake
Publisher: Springer
ISBN: 331967711X
Category : Science
Languages : en
Pages : 671

Book Description
The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation throughout and additional material on equations of state, heat waves, and ionization fronts, as well as problem sets accompanied by solutions.

Powerful Pulsed Plasma Generators

Powerful Pulsed Plasma Generators PDF Author: Victor Kolikov
Publisher: Springer
ISBN: 3319952498
Category : Science
Languages : en
Pages : 260

Book Description
This book presents experimental and theoretical results on extremely powerful plasma generators. It addresses pulsed electrical mega-ampere arcs and the mechanisms of energy transfer from the arc into hydrogen, helium and air under pressures up to 250 MPa and currents up to 2 MA. Extreme plasma parameters and increased energy density in the arc were achieved. It was found experimentally that increasing the initial gas pressure to hundreds of MPa leads to improved arc stability, high efficiency of energy transfer from arc to gas, and plasma enthalpy growth. The data obtained data provides the basis for the development of electrophysical devices with high energy density, e.g. high intensity sources for visible, UV and X-ray irradiation for laser pumping, generators of high enthalpy plasma jets, and plasma chemical reactors.